
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com> Co-authored-by: Xiaowei Jiang <xwjiang2010@gmail.com> Co-authored-by: ywang96 <ywang@roblox.com> Co-authored-by: xwjiang2010 <87673679+xwjiang2010@users.noreply.github.com> Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
387 lines
15 KiB
Python
387 lines
15 KiB
Python
from dataclasses import dataclass
|
|
from typing import (TYPE_CHECKING, Any, Dict, List, Mapping, Optional, Tuple,
|
|
Type, Union)
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention import AttentionMetadata, get_attn_backend
|
|
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
|
|
ModelConfig, ParallelConfig, SchedulerConfig,
|
|
VisionLanguageConfig)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor import SamplingMetadata
|
|
from vllm.model_executor.model_loader import get_model
|
|
from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensors,
|
|
MultiModalInputs)
|
|
from vllm.sequence import (IntermediateTensors, SamplerOutput,
|
|
SequenceGroupMetadata)
|
|
from vllm.utils import make_tensor_with_pad
|
|
from vllm.worker.model_runner_base import (
|
|
ModelRunnerBase, ModelRunnerInputBase,
|
|
_add_attn_metadata_broadcastable_dict,
|
|
_add_sampling_metadata_broadcastable_dict,
|
|
_init_attn_metadata_from_tensor_dict,
|
|
_init_sampling_metadata_from_tensor_dict)
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.attention.backends.abstract import AttentionBackend
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
_PAD_SLOT_ID = -1
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class CPUModelInput(ModelRunnerInputBase):
|
|
"""
|
|
Used by the CPUModelRunner.
|
|
"""
|
|
input_tokens: Optional[torch.Tensor] = None
|
|
input_positions: Optional[torch.Tensor] = None
|
|
attn_metadata: Optional["AttentionMetadata"] = None
|
|
sampling_metadata: Optional["SamplingMetadata"] = None
|
|
multi_modal_kwargs: Optional[Mapping[str, BatchedTensors]] = None
|
|
|
|
def as_broadcastable_tensor_dict(
|
|
self) -> Dict[str, Union[int, torch.Tensor]]:
|
|
tensor_dict = {
|
|
"input_tokens": self.input_tokens,
|
|
"input_positions": self.input_positions,
|
|
"multi_modal_kwargs": self.multi_modal_kwargs,
|
|
}
|
|
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
|
|
_add_sampling_metadata_broadcastable_dict(tensor_dict,
|
|
self.sampling_metadata)
|
|
return tensor_dict
|
|
|
|
@classmethod
|
|
def from_broadcasted_tensor_dict(
|
|
cls: Type["CPUModelInput"],
|
|
tensor_dict: Dict[str, Any],
|
|
attn_backend: Optional["AttentionBackend"] = None
|
|
) -> "CPUModelInput":
|
|
tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
|
|
if attn_backend is not None:
|
|
tensor_dict = _init_attn_metadata_from_tensor_dict(
|
|
attn_backend, tensor_dict)
|
|
return cls(**tensor_dict)
|
|
|
|
|
|
class CPUModelRunner(ModelRunnerBase[CPUModelInput]):
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
parallel_config: ParallelConfig,
|
|
scheduler_config: SchedulerConfig,
|
|
device_config: DeviceConfig,
|
|
cache_config: CacheConfig,
|
|
load_config: LoadConfig,
|
|
lora_config: Optional[LoRAConfig],
|
|
vision_language_config: Optional[VisionLanguageConfig],
|
|
kv_cache_dtype: Optional[str] = "auto",
|
|
is_driver_worker: bool = False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.model_config = model_config
|
|
self.parallel_config = parallel_config
|
|
self.scheduler_config = scheduler_config
|
|
# Currently, CPU worker doesn't support chunked prefill.
|
|
assert self.scheduler_config.chunked_prefill_enabled is False
|
|
self.device_config = device_config
|
|
self.cache_config = cache_config
|
|
self.lora_config = lora_config
|
|
self.vision_language_config = vision_language_config
|
|
self.load_config = load_config
|
|
self.is_driver_worker = is_driver_worker
|
|
|
|
self.device = self.device_config.device
|
|
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
self.sliding_window = model_config.get_sliding_window()
|
|
self.block_size = cache_config.block_size
|
|
self.attn_backend = get_attn_backend(
|
|
self.model_config.get_num_attention_heads(self.parallel_config),
|
|
self.model_config.get_head_size(),
|
|
self.model_config.get_num_kv_heads(self.parallel_config),
|
|
self.model_config.get_sliding_window(),
|
|
self.model_config.dtype,
|
|
self.kv_cache_dtype,
|
|
self.block_size,
|
|
)
|
|
|
|
# Multi-modal data support
|
|
self.multi_modal_input_mapper = MULTIMODAL_REGISTRY \
|
|
.create_input_mapper(self.model_config)
|
|
|
|
# Lazy initialization.
|
|
self.model: nn.Module # Set after init_Model
|
|
|
|
def load_model(self) -> None:
|
|
self.model = get_model(
|
|
model_config=self.model_config,
|
|
load_config=self.load_config,
|
|
device_config=self.device_config,
|
|
vision_language_config=self.vision_language_config,
|
|
lora_config=self.lora_config,
|
|
parallel_config=self.parallel_config,
|
|
scheduler_config=self.scheduler_config,
|
|
cache_config=self.cache_config)
|
|
|
|
def _prepare_prompt(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int],
|
|
Mapping[str, BatchedTensors]]:
|
|
assert len(seq_group_metadata_list) > 0
|
|
input_tokens: List[int] = []
|
|
input_positions: List[int] = []
|
|
slot_mapping: List[int] = []
|
|
seq_lens: List[int] = []
|
|
multi_modal_inputs_list: List[MultiModalInputs] = []
|
|
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
assert seq_group_metadata.is_prompt
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
assert len(seq_ids) == 1
|
|
seq_id = seq_ids[0]
|
|
|
|
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
prompt_tokens = seq_data.get_token_ids()
|
|
computed_len = seq_data.get_num_computed_tokens()
|
|
seq_len = len(prompt_tokens)
|
|
|
|
seq_lens.append(seq_len) # Prompt token num
|
|
input_tokens.extend(prompt_tokens) # Token ids
|
|
|
|
# Token position ids
|
|
# NOTE(woosuk): Here we assume that the first token in the prompt
|
|
# is always the first token in the sequence.
|
|
input_positions.extend(list(range(computed_len, seq_len)))
|
|
|
|
mm_data = seq_group_metadata.multi_modal_data
|
|
if mm_data:
|
|
mm_kwargs = self.multi_modal_input_mapper(mm_data)
|
|
multi_modal_inputs_list.append(mm_kwargs)
|
|
|
|
# Compute the slot mapping.
|
|
block_table = seq_group_metadata.block_tables[seq_id]
|
|
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
|
|
# where start_idx is max(0, seq_len - sliding_window).
|
|
# For example, if the prompt len is 10, sliding window is 8, and
|
|
# block size is 4, the first two tokens are masked and the slot
|
|
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
|
start_idx = 0
|
|
if self.sliding_window is not None:
|
|
start_idx = max(0, seq_len - self.sliding_window)
|
|
|
|
for i in range(computed_len, seq_len):
|
|
if i < start_idx:
|
|
slot_mapping.append(_PAD_SLOT_ID)
|
|
continue
|
|
|
|
block_number = block_table[i //
|
|
self.block_size] # type: ignore
|
|
block_offset = i % self.block_size # type: ignore
|
|
slot = block_number * self.block_size + block_offset
|
|
slot_mapping.append(slot)
|
|
|
|
num_prompt_tokens = len(input_tokens)
|
|
|
|
input_tokens = torch.tensor(input_tokens,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
input_positions = torch.tensor(input_positions,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
slot_mapping = torch.tensor(slot_mapping,
|
|
dtype=torch.long,
|
|
device=self.device) # type: ignore
|
|
|
|
attn_metadata = self.attn_backend.make_metadata(
|
|
is_prompt=True,
|
|
seq_lens=seq_lens,
|
|
seq_lens_tensor=None,
|
|
max_decode_seq_len=None,
|
|
num_prefills=len(seq_lens),
|
|
num_prefill_tokens=num_prompt_tokens,
|
|
num_decode_tokens=0,
|
|
block_tables=torch.tensor([]),
|
|
slot_mapping=slot_mapping,
|
|
)
|
|
|
|
multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list,
|
|
device=self.device)
|
|
|
|
return (input_tokens, input_positions, attn_metadata, seq_lens,
|
|
multi_modal_kwargs)
|
|
|
|
def _prepare_decode(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
|
|
assert len(seq_group_metadata_list) > 0
|
|
input_tokens: List[int] = []
|
|
input_positions: List[int] = []
|
|
slot_mapping: List[int] = []
|
|
seq_lens: List[int] = []
|
|
block_tables: List[List[int]] = []
|
|
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
assert not seq_group_metadata.is_prompt
|
|
assert seq_group_metadata.token_chunk_size == 1
|
|
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
|
|
for seq_id in seq_ids:
|
|
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
generation_token = seq_data.get_last_token_id()
|
|
input_tokens.append(generation_token)
|
|
|
|
seq_len = seq_data.get_len()
|
|
position = seq_len - 1
|
|
input_positions.append(position)
|
|
|
|
seq_len = seq_len if self.sliding_window is None else min(
|
|
seq_len, self.sliding_window)
|
|
seq_lens.append(seq_len)
|
|
|
|
block_table = seq_group_metadata.block_tables[seq_id]
|
|
block_number = block_table[position // self.block_size]
|
|
block_offset = position % self.block_size
|
|
slot = block_number * self.block_size + block_offset
|
|
slot_mapping.append(slot)
|
|
|
|
if self.sliding_window is not None:
|
|
sliding_window_blocks = (self.sliding_window //
|
|
self.block_size)
|
|
block_table = block_table[-sliding_window_blocks:]
|
|
block_tables.append(block_table)
|
|
|
|
max_decode_seq_len = max(seq_lens)
|
|
|
|
input_tokens = torch.tensor(input_tokens,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
input_positions = torch.tensor(input_positions,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
slot_mapping = torch.tensor(slot_mapping,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
seq_lens_tensor = torch.tensor(seq_lens,
|
|
dtype=torch.int,
|
|
device=self.device)
|
|
|
|
max_block_table_len = max(
|
|
len(block_table) for block_table in block_tables)
|
|
block_tables = make_tensor_with_pad(
|
|
block_tables,
|
|
max_len=max_block_table_len,
|
|
pad=0,
|
|
dtype=torch.int,
|
|
device=self.device,
|
|
)
|
|
|
|
attn_metadata = self.attn_backend.make_metadata(
|
|
is_prompt=False,
|
|
slot_mapping=slot_mapping,
|
|
seq_lens=seq_lens,
|
|
seq_lens_tensor=seq_lens_tensor,
|
|
max_decode_seq_len=max_decode_seq_len,
|
|
num_prefill_tokens=0,
|
|
num_decode_tokens=len(input_tokens),
|
|
num_prefills=0,
|
|
block_tables=block_tables,
|
|
)
|
|
return (
|
|
input_tokens,
|
|
input_positions,
|
|
attn_metadata,
|
|
)
|
|
|
|
def make_model_input_from_broadcasted_tensor_dict(
|
|
self,
|
|
tensor_dict: Dict[str, Any],
|
|
) -> CPUModelInput:
|
|
return CPUModelInput.from_broadcasted_tensor_dict(
|
|
tensor_dict,
|
|
attn_backend=self.attn_backend,
|
|
)
|
|
|
|
def prepare_model_input(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
virtual_engine: int = 0,
|
|
finished_requests_ids: Optional[List[str]] = None
|
|
) -> CPUModelInput:
|
|
multi_modal_kwargs = None
|
|
# NOTE: We assume that all sequences in the group are all prompts or
|
|
# all decodes.
|
|
is_prompt = seq_group_metadata_list[0].is_prompt
|
|
# Prepare input tensors.
|
|
if is_prompt:
|
|
(input_tokens, input_positions, attn_metadata, seq_lens,
|
|
multi_modal_kwargs
|
|
) = self._prepare_prompt(seq_group_metadata_list)
|
|
else:
|
|
(input_tokens, input_positions,
|
|
attn_metadata) = self._prepare_decode(seq_group_metadata_list)
|
|
seq_lens = []
|
|
sampling_metadata = SamplingMetadata.prepare(
|
|
seq_group_metadata_list,
|
|
seq_lens,
|
|
# query_lens is not needed if chunked prefill is not
|
|
# supported. Since CPU worker doesn't support chunked prefill
|
|
# just use seq_lens instead.
|
|
seq_lens,
|
|
self.device,
|
|
pin_memory=False)
|
|
return CPUModelInput(
|
|
input_tokens=input_tokens,
|
|
input_positions=input_positions,
|
|
attn_metadata=attn_metadata,
|
|
sampling_metadata=sampling_metadata,
|
|
multi_modal_kwargs=multi_modal_kwargs,
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def execute_model(
|
|
self,
|
|
model_input: CPUModelInput,
|
|
kv_caches: List[torch.Tensor],
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
num_steps: int = 1,
|
|
) -> Optional[List[SamplerOutput]]:
|
|
if num_steps > 1:
|
|
raise ValueError(
|
|
"CPU worker does not support multi-step execution.")
|
|
|
|
model_executable = self.model
|
|
execute_model_kwargs = {
|
|
"input_ids": model_input.input_tokens,
|
|
"positions": model_input.input_positions,
|
|
"kv_caches": kv_caches,
|
|
"attn_metadata": model_input.attn_metadata,
|
|
**(model_input.multi_modal_kwargs or {}),
|
|
}
|
|
|
|
hidden_states = model_executable(**execute_model_kwargs)
|
|
|
|
# Compute the logits.
|
|
logits = self.model.compute_logits(hidden_states,
|
|
model_input.sampling_metadata)
|
|
|
|
# Only perform sampling in the driver worker.
|
|
if not self.is_driver_worker:
|
|
return []
|
|
|
|
# Sample the next token.
|
|
output = self.model.sample(
|
|
logits=logits,
|
|
sampling_metadata=model_input.sampling_metadata,
|
|
)
|
|
return [output]
|