
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com> Co-authored-by: Xiaowei Jiang <xwjiang2010@gmail.com> Co-authored-by: ywang96 <ywang@roblox.com> Co-authored-by: xwjiang2010 <87673679+xwjiang2010@users.noreply.github.com> Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
154 lines
5.4 KiB
Python
154 lines
5.4 KiB
Python
import re
|
|
from typing import List, Optional, Tuple
|
|
|
|
import pytest
|
|
from transformers import AutoTokenizer
|
|
|
|
from vllm.config import VisionLanguageConfig
|
|
from vllm.multimodal.utils import rescale_image_size
|
|
from vllm.sequence import SampleLogprobs
|
|
|
|
from ..conftest import IMAGE_ASSETS
|
|
from .utils import check_logprobs_close
|
|
|
|
pytestmark = pytest.mark.vlm
|
|
|
|
_PREFACE = (
|
|
"A chat between a curious human and an artificial intelligence assistant. "
|
|
"The assistant gives helpful, detailed, and polite answers to the human's "
|
|
"questions.")
|
|
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
"stop_sign":
|
|
f"{_PREFACE} USER: <image>\nWhat's the content of the image? ASSISTANT:",
|
|
"cherry_blossom":
|
|
f"{_PREFACE} USER: <image>\nWhat is the season? ASSISTANT:",
|
|
"boardwalk":
|
|
f"{_PREFACE} USER: <image>\nWhat's in this image? ASSISTANT:",
|
|
})
|
|
|
|
|
|
def iter_llava_next_configs(model_name: str):
|
|
# Need to use the max possible feature size for profile_run
|
|
image_hw_to_feature_size = {
|
|
(336, 336): 2928,
|
|
}
|
|
|
|
for (h, w), f in image_hw_to_feature_size.items():
|
|
input_shape = (1, 3, h, w)
|
|
yield (model_name,
|
|
VisionLanguageConfig(
|
|
image_feature_size=f,
|
|
image_token_id=32000,
|
|
image_input_shape=input_shape,
|
|
))
|
|
|
|
|
|
model_and_vl_config = [
|
|
*iter_llava_next_configs("llava-hf/llava-v1.6-vicuna-7b-hf"),
|
|
]
|
|
|
|
|
|
def vllm_to_hf_output(vllm_output: Tuple[List[int], str,
|
|
Optional[SampleLogprobs]],
|
|
vlm_config: VisionLanguageConfig, model_id: str):
|
|
"""Sanitize vllm output to be comparable with hf output.
|
|
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
|
|
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
|
|
It also reduces `output_str` from "<image><image>bla" to "bla".
|
|
"""
|
|
output_ids, output_str, out_logprobs = vllm_output
|
|
image_token_id = vlm_config.image_token_id
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
image_token_str = tokenizer.decode(image_token_id)
|
|
eos_token_id = tokenizer.eos_token_id
|
|
|
|
hf_output_ids = [
|
|
token_id for idx, token_id in enumerate(output_ids)
|
|
if token_id != image_token_id or output_ids[idx - 1] != image_token_id
|
|
]
|
|
|
|
hf_output_str = re.sub(fr"({image_token_str})+", "", output_str)
|
|
assert hf_output_str[0] == " "
|
|
hf_output_str = hf_output_str[1:]
|
|
if hf_output_ids[-1] == eos_token_id:
|
|
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
|
|
|
|
return hf_output_ids, hf_output_str, out_logprobs
|
|
|
|
|
|
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
|
|
@pytest.mark.parametrize(
|
|
"size_factors",
|
|
[
|
|
# No image
|
|
[],
|
|
# Single-scale
|
|
[1.0],
|
|
# Single-scale, batched
|
|
[1.0, 1.0, 1.0],
|
|
# Multi-scale
|
|
[0.25, 0.5, 1.0],
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
def test_models(hf_runner, vllm_runner, image_assets, model_and_config,
|
|
size_factors, dtype: str, max_tokens: int,
|
|
num_logprobs: int) -> None:
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
All the image fixtures for the test is under tests/images.
|
|
For huggingface runner, we provide the PIL images as input.
|
|
For vllm runner, we provide MultiModalDataDict objects
|
|
and corresponding vision language config as input.
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
The text output is sanitized to be able to compare with hf.
|
|
"""
|
|
model_id, vlm_config = model_and_config
|
|
images = [asset.pil_image for asset in image_assets]
|
|
|
|
inputs_per_image = [(
|
|
[prompt for _ in size_factors],
|
|
[rescale_image_size(image, factor) for factor in size_factors],
|
|
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
|
|
|
# max_model_len should be greater than image_feature_size
|
|
with vllm_runner(model_id,
|
|
dtype=dtype,
|
|
max_model_len=4096,
|
|
enforce_eager=True,
|
|
**vlm_config.as_cli_args_dict()) as vllm_model:
|
|
vllm_outputs_per_image = [
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
images=images)
|
|
for prompts, images in inputs_per_image
|
|
]
|
|
|
|
with hf_runner(model_id, dtype=dtype, is_vision_model=True) as hf_model:
|
|
hf_outputs_per_image = [
|
|
hf_model.generate_greedy_logprobs_limit(prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
images=images)
|
|
for prompts, images in inputs_per_image
|
|
]
|
|
|
|
for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
|
|
vllm_outputs_per_image):
|
|
# TODO: Check whether using original CLIPVisionModel can improve
|
|
# consistency against HF
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=[
|
|
vllm_to_hf_output(vllm_output, vlm_config, model_id)
|
|
for vllm_output in vllm_outputs
|
|
],
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|