vllm/vllm/attention/backends/flash_attn.py
Lucas Wilkinson 978b45f399
[Kernel] Flash Attention 3 Support (#12093)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2025-01-23 06:45:48 -08:00

931 lines
40 KiB
Python

"""Attention layer with FlashAttention."""
from collections import defaultdict
from dataclasses import dataclass
from itertools import accumulate
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
import torch
from vllm import _custom_ops as ops
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionLayer,
AttentionMetadata,
AttentionMetadataBuilder,
AttentionType)
from vllm.attention.backends.utils import (
PAD_SLOT_ID, CommonAttentionState, compute_slot_mapping,
compute_slot_mapping_start_idx, get_num_prefill_decode_query_kv_tokens,
get_seq_len_block_table_args, is_all_cross_attn_metadata_set,
is_all_encoder_attn_metadata_set, is_block_tables_empty)
from vllm.envs import VLLM_FLASH_ATTN_VERSION
from vllm.multimodal import MultiModalPlaceholderMap
from vllm.platforms import current_platform
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
if TYPE_CHECKING:
from vllm.worker.model_runner import (ModelInputForGPUBuilder,
ModelInputForGPUWithSamplingMetadata)
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
flash_attn_with_kvcache,
is_fa_version_supported)
class FlashAttentionBackend(AttentionBackend):
accept_output_buffer: bool = True
@staticmethod
def get_supported_head_sizes() -> List[int]:
return [32, 64, 96, 128, 160, 192, 224, 256]
@staticmethod
def get_name() -> str:
return "FLASH_ATTN"
@staticmethod
def get_impl_cls() -> Type["FlashAttentionImpl"]:
return FlashAttentionImpl
@staticmethod
def get_metadata_cls() -> Type["AttentionMetadata"]:
return FlashAttentionMetadata
@staticmethod
def get_builder_cls() -> Type["FlashAttentionMetadataBuilder"]:
return FlashAttentionMetadataBuilder
@staticmethod
def get_state_cls() -> Type["CommonAttentionState"]:
return CommonAttentionState
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
if block_size % 16 != 0:
raise ValueError("Block size must be a multiple of 16.")
return (2, num_blocks, block_size, num_kv_heads, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
src_key_cache = src_kv_cache[0]
dst_key_cache = dst_kv_cache[0]
ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
src_value_cache = src_kv_cache[1]
dst_value_cache = dst_kv_cache[1]
ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
key_caches = [kv_cache[0] for kv_cache in kv_caches]
value_caches = [kv_cache[1] for kv_cache in kv_caches]
ops.copy_blocks(key_caches, value_caches, src_to_dists)
@dataclass
class FlashAttentionMetadata(AttentionMetadata):
"""Metadata for FlashAttentionBackend.
NOTE: Any python object stored here is not updated when it is
cuda-graph replayed. If you have values that need to be changed
dynamically, it should be stored in tensor. The tensor has to be
updated from `CUDAGraphRunner.forward` API.
"""
# (batch_size,). The sequence length per sequence. Sequence length means
# the computed tokens + new tokens None if it is a decoding.
seq_lens: Optional[List[int]]
# seq_lens stored as a tensor.
seq_lens_tensor: Optional[torch.Tensor]
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ---------------------|
# |-- query_len ---|
# Maximum sequence length among prefill batch. 0 if there are decoding
# requests only.
max_prefill_seq_len: int
# Maximum sequence length among decode batch. 0 if there are prefill
# requests only.
max_decode_seq_len: int
# (batch_size,) A tensor of context lengths (tokens that are computed
# so far).
context_lens_tensor: Optional[torch.Tensor]
# (batch_size, max_blocks_per_seq).
# Block addresses per sequence. (Seq id -> list of physical block)
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
# in the kv cache. Each block can contain up to block_size tokens.
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
# captured.
block_tables: Optional[torch.Tensor]
# Whether or not if cuda graph is enabled.
# Cuda-graph is currently enabled for decoding only.
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
use_cuda_graph: bool
# Maximum query length in the batch.
max_query_len: Optional[int] = None
# Max number of query tokens among request in the batch.
max_decode_query_len: Optional[int] = None
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
# the batch, used to index into subquery. E.g., if the subquery length
# is [4, 6], it is [0, 4, 10].
query_start_loc: Optional[torch.Tensor] = None
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
# the batch, used to index into sequence. E.g., if the sequence length is
# [4, 6], it is [0, 4, 10].
seq_start_loc: Optional[torch.Tensor] = None
_cached_prefill_metadata: Optional["FlashAttentionMetadata"] = None
_cached_decode_metadata: Optional["FlashAttentionMetadata"] = None
# Begin encoder attn & enc/dec cross-attn fields...
# Encoder sequence lengths representation
encoder_seq_lens: Optional[List[int]] = None
encoder_seq_lens_tensor: Optional[torch.Tensor] = None
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
# the batch, used to index into sequence. E.g., if the sequence length is
# [4, 6], it is [0, 4, 10].
encoder_seq_start_loc: Optional[torch.Tensor] = None
# Maximum sequence length among encoder sequences
max_encoder_seq_len: Optional[int] = None
# Number of tokens input to encoder
num_encoder_tokens: Optional[int] = None
# Cross-attention memory-mapping data structures: slot mapping
# and block tables
cross_slot_mapping: Optional[torch.Tensor] = None
cross_block_tables: Optional[torch.Tensor] = None
@property
def is_all_encoder_attn_metadata_set(self):
'''
All attention metadata required for encoder attention is set.
'''
return is_all_encoder_attn_metadata_set(self)
@property
def is_all_cross_attn_metadata_set(self):
'''
All attention metadata required for enc/dec cross-attention is set.
Superset of encoder attention required metadata.
'''
return is_all_cross_attn_metadata_set(self)
@property
def prefill_metadata(self) -> Optional["FlashAttentionMetadata"]:
if self.num_prefills == 0:
return None
if self._cached_prefill_metadata is not None:
return self._cached_prefill_metadata
assert ((self.seq_lens is not None)
or (self.encoder_seq_lens is not None))
assert ((self.seq_lens_tensor is not None)
or (self.encoder_seq_lens_tensor is not None))
# Compute some attn_metadata fields which default to None
query_start_loc = (None if self.query_start_loc is None else
self.query_start_loc[:self.num_prefills + 1])
slot_mapping = (None if self.slot_mapping is None else
self.slot_mapping[:self.num_prefill_tokens])
seq_lens = (None if self.seq_lens is None else
self.seq_lens[:self.num_prefills])
seq_lens_tensor = (None if self.seq_lens_tensor is None else
self.seq_lens_tensor[:self.num_prefills])
seq_start_loc = (None if self.seq_start_loc is None else
self.seq_start_loc[:self.num_prefills + 1])
context_lens_tensor = (None if self.context_lens_tensor is None else
self.context_lens_tensor[:self.num_prefills])
block_tables = (None if self.block_tables is None else
self.block_tables[:self.num_prefills])
self._cached_prefill_metadata = FlashAttentionMetadata(
num_prefills=self.num_prefills,
num_prefill_tokens=self.num_prefill_tokens,
num_decode_tokens=0,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=self.
multi_modal_placeholder_index_maps,
seq_lens=seq_lens,
seq_lens_tensor=seq_lens_tensor,
max_query_len=self.max_query_len,
max_prefill_seq_len=self.max_prefill_seq_len,
max_decode_query_len=0,
max_decode_seq_len=0,
query_start_loc=query_start_loc,
seq_start_loc=seq_start_loc,
context_lens_tensor=context_lens_tensor,
block_tables=block_tables,
use_cuda_graph=False,
# Begin encoder & cross attn fields below...
encoder_seq_lens=self.encoder_seq_lens,
encoder_seq_lens_tensor=self.encoder_seq_lens_tensor,
encoder_seq_start_loc=self.encoder_seq_start_loc,
max_encoder_seq_len=self.max_encoder_seq_len,
cross_slot_mapping=self.cross_slot_mapping,
cross_block_tables=self.cross_block_tables)
return self._cached_prefill_metadata
@property
def decode_metadata(self) -> Optional["FlashAttentionMetadata"]:
if self.num_decode_tokens == 0:
return None
if self._cached_decode_metadata is not None:
return self._cached_decode_metadata
assert ((self.seq_lens_tensor is not None)
or (self.encoder_seq_lens_tensor is not None))
# Compute some attn_metadata fields which default to None
slot_mapping = (None if self.slot_mapping is None else
self.slot_mapping[self.num_prefill_tokens:])
seq_lens_tensor = (None if self.seq_lens_tensor is None else
self.seq_lens_tensor[self.num_prefills:])
block_tables = (None if self.block_tables is None else
self.block_tables[self.num_prefills:])
self._cached_decode_metadata = FlashAttentionMetadata(
num_prefills=0,
num_prefill_tokens=0,
num_decode_tokens=self.num_decode_tokens,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=None,
seq_lens=None,
seq_lens_tensor=seq_lens_tensor,
max_decode_query_len=self.max_decode_query_len,
max_query_len=self.max_query_len,
max_prefill_seq_len=0,
max_decode_seq_len=self.max_decode_seq_len,
# Batch may be composed of prefill|decodes, adjust query start
# indices to refer to the start of decodes. E.g.
# in tokens:[3 prefills|6 decodes], query_start_loc=[3,9] => [0,6].
query_start_loc=(self.query_start_loc[self.num_prefills:] -
self.query_start_loc[self.num_prefills])
if self.query_start_loc is not None else None,
seq_start_loc=self.seq_start_loc[self.num_prefills:]
if self.seq_start_loc is not None else None,
context_lens_tensor=None,
block_tables=block_tables,
use_cuda_graph=self.use_cuda_graph,
# Begin encoder & cross attn fields below...
encoder_seq_lens=self.encoder_seq_lens,
encoder_seq_lens_tensor=self.encoder_seq_lens_tensor,
encoder_seq_start_loc=self.encoder_seq_start_loc,
max_encoder_seq_len=self.max_encoder_seq_len,
cross_slot_mapping=self.cross_slot_mapping,
cross_block_tables=self.cross_block_tables)
return self._cached_decode_metadata
def advance_step(self,
model_input: "ModelInputForGPUWithSamplingMetadata",
sampled_token_ids: Optional[torch.Tensor],
block_size: int,
num_seqs: int,
num_queries: int,
turn_prefills_into_decodes: bool = False):
"""
Update metadata in-place to advance one decode step.
"""
# When using cudagraph, the num_seqs is padded to the next captured
# batch sized, but num_queries tracks the actual number of requests in
# the batch. For --enforce-eager mode, num_seqs == num_queries
if num_seqs != num_queries:
assert num_seqs > num_queries
assert self.use_cuda_graph
if turn_prefills_into_decodes:
# When Mutli-Step is enabled with Chunked-Prefill, prefills and
# decodes are scheduled together. In the first step, all the
# prefills turn into decodes. This update reflects that
# conversion.
assert self.num_decode_tokens + self.num_prefills == num_seqs
self.num_decode_tokens += self.num_prefills
self.num_prefills = 0
self.num_prefill_tokens = 0
self.max_prefill_seq_len = 0
self.max_query_len = 1
self.slot_mapping = self.slot_mapping[:num_seqs]
else:
assert self.seq_lens is not None
assert self.max_decode_seq_len == max(self.seq_lens)
assert self.num_prefills == 0
assert self.num_prefill_tokens == 0
assert self.num_decode_tokens == num_seqs
assert self.slot_mapping.shape == (num_seqs, )
assert self.seq_lens is not None
assert len(self.seq_lens) == num_seqs
assert self.seq_lens_tensor is not None
assert self.seq_lens_tensor.shape == (num_seqs, )
assert self.max_query_len == 1
assert self.max_prefill_seq_len == 0
assert self.query_start_loc is not None
assert self.query_start_loc.shape == (num_queries + 1, )
assert self.seq_start_loc is not None
assert self.seq_start_loc.shape == (num_seqs + 1, )
assert self.context_lens_tensor is not None
assert self.context_lens_tensor.shape == (num_queries, )
assert self.block_tables is not None
assert self.block_tables.shape[0] == num_seqs
# Update query lengths. Note that we update only queries and not seqs,
# since tensors may be padded due to captured cuda graph batch size
for i in range(num_queries):
self.seq_lens[i] += 1
self.max_decode_seq_len = max(self.seq_lens)
ops.advance_step_flashattn(num_seqs=num_seqs,
num_queries=num_queries,
block_size=block_size,
input_tokens=model_input.input_tokens,
sampled_token_ids=sampled_token_ids,
input_positions=model_input.input_positions,
seq_lens=self.seq_lens_tensor,
slot_mapping=self.slot_mapping,
block_tables=self.block_tables)
class FlashAttentionMetadataBuilder(
AttentionMetadataBuilder[FlashAttentionMetadata]):
def __init__(self, input_builder: "ModelInputForGPUBuilder"):
self.input_builder = input_builder
self.runner = input_builder.runner
self.sliding_window = input_builder.sliding_window
self.block_size = input_builder.block_size
def prepare(self):
self.slot_mapping: List[int] = []
self.prefill_seq_lens: List[int] = []
self.context_lens: List[int] = []
self.block_tables: List[List[int]] = []
self.curr_seq_lens: List[int] = []
self.multimodal_placeholder_maps: Dict[
str,
MultiModalPlaceholderMap] = defaultdict(MultiModalPlaceholderMap)
self.num_prefills = 0
self.num_prefill_tokens = 0
self.num_decode_tokens = 0
self.has_prefix_cache_hit = False
def _add_seq_group(
self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
chunked_prefill_enabled: bool, prefix_cache_hit: bool):
"""Add a sequence group to the metadata. Specifically update/append
1. context length.
2. block table.
3. slot mapping.
"""
is_prompt = inter_data.is_prompt
block_tables = inter_data.block_tables
for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
curr_sliding_window_block) in zip(
inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
inter_data.orig_seq_lens, inter_data.seq_lens,
inter_data.query_lens, inter_data.context_lens,
inter_data.curr_sliding_window_blocks):
self.context_lens.append(context_len)
if is_prompt:
mm_maps = inter_data.multi_modal_placeholder_maps
if mm_maps:
for modality, placeholders in mm_maps.items():
self.multimodal_placeholder_maps[modality].extend(
placeholders)
self.num_prefills += 1
self.num_prefill_tokens += token_len
self.prefill_seq_lens.append(seq_len)
else:
self.num_decode_tokens += query_len
self.curr_seq_lens.append(curr_seq_len)
# Compute block table.
# TODO(sang): Combine chunked prefill and prefix caching by
# only allowing multiple of block_size chunk size.
# NOTE: This only works for oooooooxxx style attention.
block_table = []
if prefix_cache_hit:
# NOTE(woosuk): For flash-attn, the block table should
# include the entries for the incoming prefill tokens.
block_table = block_tables[seq_id]
elif ((chunked_prefill_enabled or not is_prompt)
and block_tables is not None):
if curr_sliding_window_block == 0:
block_table = block_tables[seq_id]
else:
block_table = block_tables[seq_id][
-curr_sliding_window_block:]
self.block_tables.append(block_table)
# Compute slot mapping.
is_profile_run = is_block_tables_empty(block_tables)
start_idx = compute_slot_mapping_start_idx(is_prompt, query_len,
context_len,
self.sliding_window)
compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
seq_len, context_len, start_idx,
self.block_size, inter_data.block_tables)
def _get_graph_runner_block_tables(
self, num_seqs: int,
block_tables: List[List[int]]) -> torch.Tensor:
# The shape of graph_block_tables is
# [max batch size, max context len // block size].
max_batch_size, max_blocks = self.runner.graph_block_tables.shape
assert max_batch_size >= num_seqs
graph_block_tables = self.runner.graph_block_tables[:num_seqs]
for i, block_table in enumerate(block_tables):
if block_table:
num_blocks = len(block_table)
if num_blocks <= max_blocks:
graph_block_tables[i, :num_blocks] = block_table
else:
# It may be possible to have more blocks allocated due
# to lookahead slots of multi-step, however, they are
# not used anyway, so can be safely ignored.
graph_block_tables[
i, :max_blocks] = block_table[:max_blocks]
return torch.from_numpy(graph_block_tables).to(
device=self.runner.device, non_blocking=True)
def build(self, seq_lens: List[int], query_lens: List[int],
cuda_graph_pad_size: int, batch_size: int):
"""Build attention metadata with on-device tensors.
Args:
seq_lens: The maybe padded sequence lengths of the input sequences.
query_lens: The query lengths of the input sequences.
cuda_graph_pad_size: The padding size for cuda graph.
-1 if cuda graph is not used.
batch_size: The maybe padded batch size.
"""
prefix_cache_hit = any([
inter_data.prefix_cache_hit
for inter_data in self.input_builder.inter_data_list
])
for inter_data in self.input_builder.inter_data_list:
self._add_seq_group(inter_data,
self.input_builder.chunked_prefill_enabled,
prefix_cache_hit)
device = self.runner.device
use_captured_graph = cuda_graph_pad_size != -1
max_query_len = max(query_lens)
decode_query_lens = query_lens[self.num_prefills:]
if len(decode_query_lens) > 0:
max_decode_query_len = max(decode_query_lens)
else:
max_decode_query_len = 1
max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
max_decode_seq_len = max(self.curr_seq_lens, default=0)
num_decode_tokens = self.num_decode_tokens
query_start_loc = list(accumulate(query_lens, initial=0))
seq_start_loc = list(accumulate(seq_lens, initial=0))
num_seqs = len(seq_lens)
if use_captured_graph:
self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
self.block_tables.extend([] * cuda_graph_pad_size)
num_decode_tokens = batch_size - self.num_prefill_tokens
block_tables = self._get_graph_runner_block_tables(
num_seqs, self.block_tables)
else:
block_tables = make_tensor_with_pad(
self.block_tables,
pad=0,
dtype=torch.int,
device=device,
)
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
assert device is not None
context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
device, self.runner.pin_memory)
seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
self.runner.pin_memory)
slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
device, self.runner.pin_memory)
query_start_loc_tensor = async_tensor_h2d(query_start_loc, torch.int32,
device,
self.runner.pin_memory)
seq_start_loc_tensor = async_tensor_h2d(seq_start_loc, torch.int32,
device, self.runner.pin_memory)
placeholder_index_maps = {
modality: placeholder_map.index_map()
for modality, placeholder_map in
self.multimodal_placeholder_maps.items()
}
return FlashAttentionMetadata(
num_prefills=self.num_prefills,
slot_mapping=slot_mapping_tensor,
num_prefill_tokens=self.num_prefill_tokens,
num_decode_tokens=num_decode_tokens,
seq_lens=seq_lens,
multi_modal_placeholder_index_maps=placeholder_index_maps,
seq_lens_tensor=seq_lens_tensor,
max_query_len=max_query_len,
max_decode_query_len=max_decode_query_len,
max_prefill_seq_len=max_prefill_seq_len,
max_decode_seq_len=max_decode_seq_len,
query_start_loc=query_start_loc_tensor,
seq_start_loc=seq_start_loc_tensor,
context_lens_tensor=context_lens_tensor,
block_tables=block_tables,
use_cuda_graph=use_captured_graph,
)
class FlashAttentionImpl(AttentionImpl):
"""
If the input tensors contain prompt tokens, the layout is as follows:
|<--------------- num_prefill_tokens ----------------->|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
Otherwise, the layout is as follows:
|<----------------- num_decode_tokens ------------------>|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
Generation tokens can contain padding when cuda-graph is used.
Currently, prompt tokens don't contain any padding.
The prompts might have different lengths, while the generation tokens
always have length 1.
If chunked prefill is enabled, prefill tokens and decode tokens can be
batched together in a flattened 1D query.
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
padding between prefill and decode tokens.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
) -> None:
if blocksparse_params is not None:
raise ValueError(
"FlashAttention does not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
self.sliding_window = ((sliding_window - 1,
0) if sliding_window is not None else (-1, -1))
self.kv_cache_dtype = kv_cache_dtype
if logits_soft_cap is None:
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
logits_soft_cap = 0
self.logits_soft_cap = logits_soft_cap
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
support_head_sizes = FlashAttentionBackend.get_supported_head_sizes()
if head_size not in support_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by FlashAttention. "
f"Supported head sizes are: {support_head_sizes}.")
self.attn_type = attn_type
# if hopper default to FA3, otherwise stick to FA2 for now
# TODO(lucas): profile FA3 on ampere to see if it makes sense to
# use FA3 as default for both
if current_platform.get_device_capability()[0] >= 9:
self.fa_version = 3 if is_fa_version_supported(3) else 2
else:
self.fa_version = 2
if VLLM_FLASH_ATTN_VERSION is not None:
assert VLLM_FLASH_ATTN_VERSION in [2, 3]
self.fa_version = VLLM_FLASH_ATTN_VERSION
assert is_fa_version_supported(self.fa_version)
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: FlashAttentionMetadata,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention.
Args:
query: shape = [num_tokens, num_heads, head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
output: shape = [num_tokens, num_heads, head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
NOTE: kv_cache will be an empty tensor with shape [0]
for profiling run.
attn_metadata: Metadata for attention.
NOTE: It in-place updates the output tensor.
"""
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
assert layer._k_scale == 1.0 and layer._v_scale == 1.0, (
"key/v_scale is not supported in FlashAttention.")
assert output is not None, "Output tensor must be provided."
attn_type = self.attn_type
if (attn_type == AttentionType.ENCODER
and (not attn_metadata.is_all_encoder_attn_metadata_set)):
raise AttributeError("Encoder attention requires setting "
"encoder metadata attributes.")
elif (attn_type == AttentionType.ENCODER_DECODER
and (not attn_metadata.is_all_cross_attn_metadata_set)):
raise AttributeError("Encoder/decoder cross-attention "
"requires setting cross-attention "
"metadata attributes.")
kv_cache_dtype: str = self.kv_cache_dtype
softmax_scale: float = self.scale
window_size = self.sliding_window
alibi_slopes: Optional[torch.Tensor] = self.alibi_slopes
logits_soft_cap: Optional[float] = self.logits_soft_cap
if kv_cache.numel() > 0:
key_cache = kv_cache[0]
value_cache = kv_cache[1]
# We skip updating the KV cache under two conditions:
# a. When the Attention Type is ENCODER. In this phase, we compute
# only the encoder attention without updating the cache.
# b. When both Key and Value are None. This occurs during
# cross-attention computation in the decoding phase, where the
# KV cache is already populated with the cross-attention
# tensor. Thus, we skip cache updates during this time.
if (attn_type != AttentionType.ENCODER) and (key is not None) and (
value is not None):
if attn_type == AttentionType.ENCODER_DECODER:
# Update cross-attention KV cache (prefill-only)
updated_slot_mapping = attn_metadata.cross_slot_mapping
else:
# Update self-attention KV cache (prefill/decode)
updated_slot_mapping = attn_metadata.slot_mapping
# Reshape the input keys and values and store them in the cache.
# If kv_cache is not provided, the new key and value tensors are
# not cached. This happens during the initial memory
# profiling run.
torch.ops._C_cache_ops.reshape_and_cache_flash(
key,
value,
kv_cache[0],
kv_cache[1],
updated_slot_mapping.flatten(), # type: ignore[union-attr]
kv_cache_dtype,
layer._k_scale,
layer._v_scale,
)
(num_prefill_query_tokens, num_prefill_kv_tokens,
num_decode_query_tokens) = \
get_num_prefill_decode_query_kv_tokens(attn_metadata, attn_type)
decode_query = query[num_prefill_query_tokens:]
decode_output = output[num_prefill_query_tokens:]
# QKV for prefill.
query = query[:num_prefill_query_tokens]
prefill_output = output[:num_prefill_query_tokens]
assert query.shape[0] == num_prefill_query_tokens
assert decode_query.shape[0] == num_decode_query_tokens
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
if (kv_cache.numel() == 0 or prefill_meta.block_tables is None
or prefill_meta.block_tables.numel() == 0):
# normal attention
# When block_tables are not filled, it means q and k are the
# prompt, and they have the same length.
q_seq_start_loc, q_seq_len, k_seq_start_loc, k_seq_len = \
_get_query_key_seq_metadata(prefill_meta, True, attn_type)
key = key[:num_prefill_kv_tokens]
value = value[:num_prefill_kv_tokens]
flash_attn_varlen_func(
q=query,
k=key,
v=value,
cu_seqlens_q=q_seq_start_loc,
cu_seqlens_k=k_seq_start_loc,
max_seqlen_q=q_seq_len,
max_seqlen_k=k_seq_len,
softmax_scale=softmax_scale,
causal=_get_causal_option(attn_type),
window_size=window_size,
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
out=prefill_output,
fa_version=self.fa_version,
)
else:
# prefix-enabled attention
assert attn_type == AttentionType.DECODER, (
"Only decoder-only models support prefix caching")
assert prefill_meta.seq_lens is not None
max_seq_len = max(prefill_meta.seq_lens)
flash_attn_varlen_func( # noqa
q=query,
k=key_cache,
v=value_cache,
cu_seqlens_q=prefill_meta.query_start_loc,
max_seqlen_q=prefill_meta.max_query_len,
seqused_k=prefill_meta.seq_lens_tensor,
max_seqlen_k=max_seq_len,
softmax_scale=softmax_scale,
causal=True,
window_size=window_size,
alibi_slopes=alibi_slopes,
block_table=prefill_meta.block_tables,
softcap=logits_soft_cap,
out=prefill_output,
fa_version=self.fa_version,
)
if decode_meta := attn_metadata.decode_metadata:
# Decoding run.
# Use flash_attn_varlen_func kernel for speculative decoding
# because different queries might have different lengths.
assert decode_meta.max_decode_query_len is not None
# use only for actual varlen decoding
if decode_meta.max_decode_query_len > 1:
assert attn_type == AttentionType.DECODER, (
"Only decoder-only models support max_decode_query_len > 1"
)
flash_attn_varlen_func(
q=decode_query,
k=key_cache,
v=value_cache,
cu_seqlens_q=decode_meta.query_start_loc,
max_seqlen_q=decode_meta.max_decode_query_len,
seqused_k=decode_meta.seq_lens_tensor,
max_seqlen_k=decode_meta.max_decode_seq_len,
softmax_scale=softmax_scale,
causal=True,
window_size=window_size,
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
block_table=decode_meta.block_tables,
out=decode_output,
fa_version=self.fa_version,
)
else:
# Use flash_attn_with_kvcache for normal decoding.
(
seq_lens_arg,
_,
block_tables_arg,
) = get_seq_len_block_table_args(decode_meta, False, attn_type)
flash_attn_with_kvcache(
q=decode_query.unsqueeze(1),
k_cache=key_cache,
v_cache=value_cache,
block_table=block_tables_arg,
cache_seqlens=seq_lens_arg,
softmax_scale=softmax_scale,
causal=True,
window_size=window_size,
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
out=decode_output.unsqueeze(1),
fa_version=self.fa_version,
)
return output
def _get_query_key_seq_metadata(
attn_metadata,
is_prompt: bool,
attn_type: str,
) -> tuple:
"""
Returns sequence metadata for key and query based on the specified
attention type and whether input is a prompt.
This function computes the starting locations and maximum sequence lengths
for key and query sequences for different attention types.
Args:
attn_metadata: The attention metadata object
is_prompt (bool): A flag indicating if the input is a prompt
attn_type (AttentionType): The type of attention being used.
Returns:
tuple: A tuple containing four integers:
- Starting location for the query sequence.
- Maximum sequence length for the query sequence.
- Starting location for the key sequence.
- Maximum sequence length for the key sequence.
Raises:
AttributeError: If an invalid attention type is provided.
"""
if attn_type == AttentionType.DECODER:
# Decoder self-attention
# Choose max_seq_len based on whether we are in prompt_run
if is_prompt:
max_seq_len = attn_metadata.max_prefill_seq_len
else:
max_seq_len = attn_metadata.max_decode_seq_len
return (attn_metadata.seq_start_loc, max_seq_len,
attn_metadata.seq_start_loc, max_seq_len)
elif attn_type == AttentionType.ENCODER_DECODER:
# This is cross attention between the where the key
# is the precomputed encoder attention and query
# is the input sequence.
# Choose query max length based on whether it is prompt
# or not.
if is_prompt:
max_seq_len = attn_metadata.max_prefill_seq_len
else:
max_seq_len = attn_metadata.max_decode_seq_len
return (attn_metadata.seq_start_loc, max_seq_len,
attn_metadata.encoder_seq_start_loc,
attn_metadata.max_encoder_seq_len)
elif attn_type == AttentionType.ENCODER:
# For encoder attention both the query and the key are same i.e the
# encoder sequence.
return (attn_metadata.encoder_seq_start_loc,
attn_metadata.max_encoder_seq_len,
attn_metadata.encoder_seq_start_loc,
attn_metadata.max_encoder_seq_len)
elif attn_type == AttentionType.ENCODER_ONLY:
assert is_prompt, "Should not have decode for encoder only model."
return (attn_metadata.seq_start_loc, attn_metadata.max_prefill_seq_len,
attn_metadata.seq_start_loc, attn_metadata.max_prefill_seq_len)
else:
raise AttributeError(f"Invalid attention type {str(attn_type)}")
def _get_causal_option(attn_type: str) -> bool:
"""
Determine whether the given attention type is suitable for causal
attention mechanisms.
Args:
attn_type (AttentionType): The type of attention being evaluated
Returns:
bool: Returns `True` if the attention type is suitable for causal
attention (i.e., not encoder, encoder-only, or encoder-decoder),
otherwise returns `False`.
"""
return not (attn_type == AttentionType.ENCODER
or attn_type == AttentionType.ENCODER_ONLY
or attn_type == AttentionType.ENCODER_DECODER)