vllm/tests/compile/piecewise/test_simple.py
youkaichao 96e0c9cbbd
[torch.compile] directly register custom op (#9896)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2024-10-31 21:56:09 -07:00

109 lines
2.9 KiB
Python

"""
Test the piecewise compilation with a simple model so that we
can exactly calculate the expected output and side effects.
"""
import os
import torch
from torch import nn
from torch.library import Library
from vllm.compilation.compile_context import set_compile_context
from vllm.compilation.counter import compilation_counter
from vllm.compilation.decorators import support_torch_compile
from vllm.compilation.levels import CompilationLevel
from vllm.utils import direct_register_custom_op
os.environ["VLLM_TORCH_COMPILE_LEVEL"] = str(CompilationLevel.PIECEWISE)
global_counter = 0
# create a library to hold the custom op
silly_lib = Library("silly", "FRAGMENT") # noqa
def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
out: torch.Tensor) -> None:
global global_counter
global_counter += 1
print(f"{global_counter=}")
out.copy_(q)
out[0] += 1
def silly_attention_fake(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
out: torch.Tensor) -> None:
return
direct_register_custom_op(
op_name="attention",
op_func=silly_attention,
mutates_args=["out"],
fake_impl=silly_attention_fake,
target_lib=silly_lib,
)
@support_torch_compile
class SillyModel(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Overall effect:
x += 1
x[0] += 2
global_counter += 2
"""
x = x + 1
x = x + 2
out = torch.empty_like(x)
torch.ops.silly.attention(x, x, x, out)
x = out
x = x - 2
x = x - 1
out = torch.empty_like(x)
torch.ops.silly.attention(x, x, x, out)
x = out
x = x + 1
return x
def test_simple_piecewise_compile():
model = SillyModel()
directory = os.path.dirname(__file__)
config = os.path.join(directory, "piecewise_compilation_config.json")
os.environ["VLLM_TORCH_COMPILE_CONFIG"] = config
input_buffer = torch.randn(100).cuda()
with compilation_counter.expect(
num_graphs_seen=1, # one graph for the model
num_piecewise_graphs_seen=5, # 2 * num_layers + 1
num_piecewise_capturable_graphs_seen=3, # 1 + num_layers
num_inductor_compilations=3, # num_piecewise_capturable_graphs_seen
num_cudagraph_caputured=
6, # num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
):
with set_compile_context([1, 2]):
model(input_buffer)
model(input_buffer[:2])
model(input_buffer[:1])
input_buffer[:2].zero_()
global global_counter
global_counter = 0
output = model(input_buffer[:2])
assert global_counter == 2
assert torch.allclose(output.cpu(), torch.tensor([3., 1.]))
# clean up to avoid side effects for other tests
del os.environ["VLLM_TORCH_COMPILE_CONFIG"]