vllm/csrc/quantization/machete/machete_mm_kernel.cuh
Lucas Wilkinson 96d999fbe8
[Kernel] Initial Machete W4A8 support + Refactors (#9855)
Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
2024-11-18 12:59:29 -07:00

315 lines
13 KiB
Plaintext

#pragma once
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/all.h>
// clang-format off
// The cutlass include order matters (annoyingly)
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
// clang-format on
#include "cutlass_extensions/cute_utils.cuh"
#include "cutlass_extensions/vllm_numeric_conversion.cuh"
#include "cutlass_extensions/epilogue/scaled_mm_epilogues_c3x.hpp"
#include "cutlass_extensions/torch_utils.hpp"
#include "machete_collective_builder.cuh"
#include "machete_prepacked_layout.cuh"
#include "machete_interleaving_utils.cuh"
namespace machete {
using namespace cute;
// NOTE This kernel computes D = alpha * A * B + beta * C by computing
// D^t = alpha * B^t * A^t + beta * C^t, this is because the wgmma
// instructions only support sourcing from registers for the left-hand
// operand, we want to upconvert/decompress the quantized operand in
// register. Since the primary use case we want to support is Y = XW^t where
// W is quantized, in this situation or right-hand operand is quantized so
// we compute the transpose to move it to the left-hand side.
template <typename ElementA_, typename ElementB_, typename ElementD_,
typename AccumulatorT, typename GroupScaleT, typename GroupZeroT,
typename ChannelScaleT, typename TokenScaleT, class KernelSchedule,
typename ScheduleConfig>
struct MacheteKernelTemplate {
static constexpr bool with_C = false; // not ever used
static constexpr bool with_group_scales = !std::is_same_v<GroupScaleT, void>;
static constexpr bool with_group_zeropoints =
!std::is_same_v<GroupZeroT, void>;
static constexpr bool with_channel_scales =
!std::is_same_v<ChannelScaleT, void>;
static constexpr bool with_token_scales = !std::is_same_v<TokenScaleT, void>;
using MmaType = ElementA_;
using ElementA = ElementA_;
using ElementB = ElementB_;
using ElementD = ElementD_;
using ElementC = cute::conditional_t<with_C, ElementD, void>;
using ElementAccumulator = AccumulatorT;
using ElementCompute = AccumulatorT; // For Epilogue
// Use dummy values when we don't have scales or zeropoints
using ElementZGroup =
cute::conditional_t<with_group_zeropoints, GroupZeroT, MmaType>;
using ElementSGroup =
cute::conditional_t<with_group_scales, GroupScaleT, MmaType>;
using ElementConvertGroup =
cute::conditional_t<with_group_scales, GroupScaleT, MmaType>;
using ElementSChannel =
cute::conditional_t<with_channel_scales, ChannelScaleT, AccumulatorT>;
using ElementSToken =
cute::conditional_t<with_token_scales, TokenScaleT, AccumulatorT>;
using BTypeTuple = cute::conditional_t<
with_group_scales,
cute::conditional_t<with_group_zeropoints,
cute::tuple<ElementB, ElementSGroup, ElementZGroup>,
cute::tuple<ElementB, ElementSGroup>>,
ElementB>;
using LayoutA = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using LayoutD = LayoutC;
using LayoutScale = cutlass::layout::RowMajor;
// not actually used since B has the prepacked layout, but required by cutlass
using _LayoutB = cutlass::layout::ColumnMajor;
// Interface strides expected by create_arguments (will get transposed)
using StrideA = cutlass::detail::TagToStrideA_t<LayoutA>;
using StrideC = cutlass::detail::TagToStrideA_t<LayoutC>;
using StrideD = cutlass::detail::TagToStrideA_t<LayoutD>;
using StrideSGroup = cutlass::detail::TagToStrideA_t<LayoutScale>;
using StrideZGroup = StrideSGroup;
using LayoutA_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutA>::type;
using LayoutC_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutC>::type;
using LayoutD_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutD>::type;
using ArchTag = cutlass::arch::Sm90;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using PrepackedLayoutB =
PrepackedLayoutBTemplate<ElementA_, ElementB_, ElementConvertGroup,
AccumulatorT, LayoutA_Transpose, KernelSchedule>;
static int constexpr TileShapeK =
128 * 8 / cutlass::sizeof_bits<MmaType>::value;
static int constexpr AlignmentA = 128 / cutlass::sizeof_bits_v<ElementA>;
static int constexpr AlignmentB = 128 / cutlass::sizeof_bits_v<ElementB>;
static int constexpr AlignmentC =
(with_C) ? 128 / cutlass::sizeof_bits_v<ElementC> : 0;
static int constexpr AlignmentD = 128 / cutlass::sizeof_bits_v<ElementD>;
using TileShape = decltype(append(typename ScheduleConfig::TileShapeNM{},
cute::Int<TileShapeK>{}));
using ClusterShape = typename ScheduleConfig::ClusterShape;
using EpilogueSchedule = typename ScheduleConfig::EpilogueSchedule;
using EpilogueTileType = typename ScheduleConfig::EpilogueTileType;
using TileScheduler = typename ScheduleConfig::TileScheduler;
static_assert(
(!with_channel_scales && !with_token_scales) ||
((with_channel_scales && with_token_scales) &&
std::is_same_v<ElementSChannel, ElementSToken>),
"Currently token and channel scales (if present) must be the same type");
using EpilogueDescriptor =
cutlass::epilogue::collective::detail::EpilogueDescriptor<
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
ElementD, EpilogueSchedule>;
// Currently only supports float scales
using ChTokScalesEpilogue =
typename vllm::c3x::ScaledEpilogue<ElementAccumulator, ElementD,
EpilogueDescriptor>;
static_assert((with_channel_scales || with_token_scales) ||
(std::is_same_v<ElementSChannel, float> &&
std::is_same_v<ElementSToken, float>),
"Currently token and channel scales (if present) must be float "
"(and if one is present the other must be too)");
using StoreEpilogueCompute = typename cutlass::epilogue::fusion::Sm90EVT<
cutlass::epilogue::fusion::Sm90AccFetch>;
using EVTCompute =
std::conditional_t<with_channel_scales || with_token_scales,
typename ChTokScalesEpilogue::EVTCompute,
StoreEpilogueCompute>;
// EVTCompute
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag, OperatorClass, TileShape, ClusterShape, EpilogueTileType,
ElementAccumulator, ElementSChannel, ElementC, LayoutC_Transpose,
AlignmentC, ElementD, LayoutD_Transpose, AlignmentD, EpilogueSchedule,
EVTCompute>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::VLLMCollectiveBuilder<
cutlass::gemm::collective::MacheteKernelTag, ArchTag, OperatorClass,
BTypeTuple, PrepackedLayoutB, AlignmentB, ElementA, LayoutA_Transpose,
AlignmentA, ElementAccumulator, TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, // Indicates ProblemShape
CollectiveMainloop, CollectiveEpilogue, TileScheduler>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
// stride_B is unused (since B is prepacked), but still required by cutlass
using _StrideB = cutlass::detail::TagToStrideB_t<_LayoutB>;
using Arguments = typename Gemm::Arguments;
using MainloopArguments = typename GemmKernel::MainloopArguments;
using EpilogueArguments = typename GemmKernel::EpilogueArguments;
static Arguments create_arguments(
cudaStream_t stream,
torch::Tensor const& A, // MxK matrix
torch::Tensor const& B, // KxN prepacked matrix
torch::Tensor& D, // MxN matrix
c10::optional<torch::Tensor> const& maybe_g_scales, // scale_KxN matrix
c10::optional<torch::Tensor> const& maybe_g_zeros, // scale_KxN matrix
c10::optional<int64_t> maybe_group_size,
c10::optional<torch::Tensor> const& maybe_ch_scales, // len N vector
c10::optional<torch::Tensor> const& maybe_tok_scales) // len M vector
{
static_assert(!with_group_zeropoints || with_group_scales);
int M = A.size(0), N = B.size(1), K = A.size(1);
TORCH_CHECK(D.size(0) == M && D.size(1) == N);
auto layout_A = make_cute_layout<StrideA>(A, "A");
auto layout_D = make_cute_layout<StrideD>(D, "D");
auto layout_S_group =
maybe_make_cute_layout<StrideSGroup>(maybe_g_scales, "group_scales");
auto layout_Z_group =
maybe_make_cute_layout<StrideZGroup>(maybe_g_zeros, "group_zeros");
int64_t numel_S_channel = maybe_ch_scales ? maybe_ch_scales->numel() : 0;
int64_t numel_S_token = maybe_tok_scales ? maybe_tok_scales->numel() : 0;
auto unwrap = [](auto const& t) {
return t ? t->const_data_ptr() : nullptr;
};
auto A_ptr = static_cast<ElementA const*>(A.const_data_ptr());
auto B_ptr = static_cast<ElementB const*>(B.const_data_ptr());
auto D_ptr = static_cast<ElementD*>(D.mutable_data_ptr());
auto S_group_ptr =
static_cast<ElementSGroup const*>(unwrap(maybe_g_scales));
auto Z_group_ptr = static_cast<ElementZGroup const*>(unwrap(maybe_g_zeros));
auto S_channel_ptr =
static_cast<ElementSChannel const*>(unwrap(maybe_ch_scales));
auto S_token_ptr =
static_cast<ElementSToken const*>(unwrap(maybe_tok_scales));
int const group_size =
maybe_group_size == -1 ? K : maybe_group_size.value_or(K);
int const scale_k = (K + group_size - 1) / group_size;
TORCH_CHECK(size<0>(layout_A) == M && size<1>(layout_A) == K);
TORCH_CHECK(size<0>(layout_D) == M && size<1>(layout_D) == N);
if constexpr (with_group_scales) {
TORCH_CHECK(S_group_ptr && layout_S_group);
TORCH_CHECK((size<0>(*layout_S_group) == scale_k &&
size<1>(*layout_S_group) == N));
} else {
TORCH_CHECK(!S_group_ptr, "Scales not supported");
}
if constexpr (with_group_zeropoints) {
TORCH_CHECK(Z_group_ptr && layout_Z_group);
TORCH_CHECK((size<0>(*layout_Z_group) == scale_k &&
size<1>(*layout_Z_group) == N));
TORCH_CHECK(layout_S_group && *layout_Z_group == *layout_S_group,
"Scales and zeros must have the same layout");
} else {
TORCH_CHECK(!Z_group_ptr, "Zeropoints not supported");
}
if constexpr (with_channel_scales || with_token_scales) {
TORCH_CHECK(
(maybe_ch_scales->numel() == N || maybe_ch_scales->numel() == 1) &&
(maybe_tok_scales->numel() == M || maybe_tok_scales->numel() == 1));
}
// Transpose A and D
// A doesn't need to be transposed since cutlass expects a NxK matrix
// for B (which is At)
auto stride_At = layout_A.stride();
auto stride_Dt = permute_layout<1, 0, 2>(layout_D).stride();
MainloopArguments mainloop_arguments{};
// {Accum, C, C_layout, D, D}
EpilogueArguments epilogue_arguments{};
if constexpr (with_channel_scales || with_token_scales) {
epilogue_arguments =
EpilogueArguments{ChTokScalesEpilogue::prepare_args(
*maybe_ch_scales, *maybe_tok_scales),
nullptr,
{},
D_ptr,
stride_Dt};
} else {
epilogue_arguments = EpilogueArguments{{}, nullptr, {}, D_ptr, stride_Dt};
}
if constexpr (with_group_scales && with_group_zeropoints) {
auto stride_S_group = permute_layout<1, 0, 2>(*layout_S_group).stride();
mainloop_arguments = MainloopArguments{
B_ptr, _StrideB{}, A_ptr, stride_At,
S_group_ptr, stride_S_group, group_size, Z_group_ptr};
} else if constexpr (with_group_scales) {
auto stride_S_group = permute_layout<1, 0, 2>(*layout_S_group).stride();
mainloop_arguments =
MainloopArguments{B_ptr, _StrideB{}, A_ptr, stride_At,
S_group_ptr, stride_S_group, group_size};
} else {
mainloop_arguments =
MainloopArguments{B_ptr, _StrideB{}, A_ptr, stride_At};
}
return Arguments{cutlass::gemm::GemmUniversalMode::kGemm,
{N, M, K, 1},
mainloop_arguments,
epilogue_arguments};
};
static size_t get_workspace_size(Arguments const& args) {
return Gemm::get_workspace_size(args);
}
static bool can_implement(Arguments const& args) {
return Gemm::can_implement(args) == cutlass::Status::kSuccess;
}
static void run(Arguments const& args, void* workspace, cudaStream_t stream) {
Gemm gemm_op;
cutlass::Status status = gemm_op.initialize(args, workspace, stream);
TORCH_CHECK(status == cutlass::Status::kSuccess,
"Machete kernel failed to initialize workspace");
status = gemm_op.run(stream);
TORCH_CHECK(status == cutlass::Status::kSuccess, "Machete kernel failed");
}
};
}; // namespace machete