
Co-authored-by: Jiang Li <jiang1.li@intel.com> Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
831 lines
35 KiB
Python
831 lines
35 KiB
Python
import time
|
|
from typing import Dict, List, Optional, Tuple, Set, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.config import DeviceConfig, ModelConfig, LoRAConfig, ParallelConfig, SchedulerConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor import get_model, InputMetadata, SamplingMetadata
|
|
from vllm.model_executor.parallel_utils.communication_op import (
|
|
broadcast_tensor_dict)
|
|
from vllm.model_executor.parallel_utils import custom_all_reduce
|
|
from vllm.sampling_params import SamplingParams, SamplingType
|
|
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
|
|
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
|
|
from vllm.lora.layers import LoRAMapping
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.utils import in_wsl
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
_PAD_SLOT_ID = -1
|
|
LORA_WARMUP_RANK = 8
|
|
# Capture graphs for batch size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
|
|
# NOTE: _get_graph_batch_size needs to be updated if this list is changed.
|
|
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [8 * i for i in range(1, 33)]
|
|
|
|
|
|
class ModelRunner:
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
parallel_config: ParallelConfig,
|
|
scheduler_config: SchedulerConfig,
|
|
device_config: DeviceConfig,
|
|
lora_config: Optional[LoRAConfig],
|
|
kv_cache_dtype: Optional[str] = "auto",
|
|
is_driver_worker: bool = False,
|
|
):
|
|
self.model_config = model_config
|
|
self.parallel_config = parallel_config
|
|
self.scheduler_config = scheduler_config
|
|
self.lora_config = lora_config
|
|
self.is_driver_worker = is_driver_worker
|
|
|
|
# model_config can be None in tests/samplers/test_sampler.py.
|
|
# FIXME(woosuk): This is a hack to make the tests work. Refactor this.
|
|
self.sliding_window = (model_config.get_sliding_window()
|
|
if model_config is not None else None)
|
|
self.device_config = (device_config
|
|
if device_config is not None else DeviceConfig())
|
|
self.device = self.device_config.device
|
|
|
|
self.model = None
|
|
self.block_size = None # Set after initial profiling.
|
|
self.lora_manager = None
|
|
|
|
self.graph_runners: Dict[int, CUDAGraphRunner] = {}
|
|
self.graph_memory_pool = None # Set during graph capture.
|
|
|
|
self.max_context_len_to_capture = (
|
|
self.model_config.max_context_len_to_capture
|
|
if self.model_config is not None else 0)
|
|
# When using CUDA graph, the input block tables must be padded to
|
|
# max_context_len_to_capture. However, creating the block table in
|
|
# Python can be expensive. To optimize this, we cache the block table
|
|
# in numpy and only copy the actual input content at every iteration.
|
|
# The shape of the cached block table will be
|
|
# (max batch size to capture, max context len to capture / block size).
|
|
self.graph_block_tables = None # Set after initial profiling.
|
|
# cache in_wsl result
|
|
self.in_wsl = in_wsl()
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
|
|
def load_model(self) -> None:
|
|
self.model = get_model(self.model_config, self.device_config,
|
|
self.lora_config)
|
|
|
|
vocab_size = self.model.config.vocab_size
|
|
|
|
if self.lora_config:
|
|
self.lora_manager = LRUCacheWorkerLoRAManager(
|
|
self.scheduler_config.max_num_seqs,
|
|
self.scheduler_config.max_num_batched_tokens +
|
|
self.scheduler_config.max_paddings, vocab_size,
|
|
self.lora_config, self.device)
|
|
self.model = self.lora_manager.create_lora_manager(self.model)
|
|
|
|
def set_block_size(self, block_size: int) -> None:
|
|
self.block_size = block_size
|
|
|
|
max_num_blocks = (self.max_context_len_to_capture + block_size -
|
|
1) // block_size
|
|
self.graph_block_tables = np.zeros(
|
|
(max(_BATCH_SIZES_TO_CAPTURE), max_num_blocks), dtype=np.int32)
|
|
|
|
def _prepare_prompt(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, List[int], List[int],
|
|
List[int], List[int], Set[LoRARequest]]:
|
|
assert len(seq_group_metadata_list) > 0
|
|
input_tokens: List[List[int]] = []
|
|
input_positions: List[List[int]] = []
|
|
slot_mapping: List[List[int]] = []
|
|
lora_index_mapping: List[int] = []
|
|
lora_prompt_mapping: List[int] = []
|
|
lora_requests: Set[LoRARequest] = set()
|
|
|
|
prompt_lens: List[int] = []
|
|
context_lens: List[int] = []
|
|
subquery_lens: List[int] = []
|
|
prefix_block_tables: List[List[int]] = []
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
assert seq_group_metadata.is_prompt
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
assert len(seq_ids) == 1
|
|
seq_id = seq_ids[0]
|
|
|
|
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
prompt_tokens = seq_data.get_token_ids()
|
|
prompt_len = len(prompt_tokens)
|
|
prompt_lens.append(prompt_len)
|
|
prefix_len = 0
|
|
prefix = seq_group_metadata.prefix
|
|
if prefix is not None and prefix.computed:
|
|
prefix_len = prefix.get_length()
|
|
prompt_tokens = prompt_tokens[prefix_len:]
|
|
prefix_block_tables.append(prefix.get_block_numbers())
|
|
else:
|
|
prefix_block_tables.append([])
|
|
# actual prompt lens
|
|
context_lens.append(prefix_len)
|
|
subquery_lens.append(prompt_len - prefix_len)
|
|
|
|
input_tokens.append(prompt_tokens)
|
|
# NOTE(woosuk): Here we assume that the first token in the prompt
|
|
# is always the first token in the sequence.
|
|
input_positions.append(
|
|
list(range(prefix_len, prefix_len + len(prompt_tokens))))
|
|
|
|
lora_id = seq_group_metadata.lora_int_id
|
|
|
|
if lora_id > 0:
|
|
lora_requests.add(seq_group_metadata.lora_request)
|
|
|
|
lora_index_mapping.append([lora_id] * (prompt_len - prefix_len))
|
|
lora_prompt_mapping.extend(
|
|
[lora_id] *
|
|
(prompt_len - prefix_len
|
|
if seq_group_metadata.sampling_params.prompt_logprobs else 1))
|
|
|
|
if seq_group_metadata.block_tables is None:
|
|
# During memory profiling, the block tables are not initialized
|
|
# yet. In this case, we just use a dummy slot mapping.
|
|
slot_mapping.append([_PAD_SLOT_ID] * prompt_len)
|
|
continue
|
|
|
|
# Compute the slot mapping.
|
|
slot_mapping.append([])
|
|
block_table = seq_group_metadata.block_tables[seq_id]
|
|
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
|
|
# where start_idx is max(0, prompt_len - sliding_window).
|
|
# For example, if the prompt len is 10, sliding window is 8, and
|
|
# block size is 4, the first two tokens are masked and the slot
|
|
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
|
|
start_idx = 0
|
|
if self.sliding_window is not None:
|
|
assert prefix_len == 0, (
|
|
"Prefix caching is currently not supported with "
|
|
"sliding window attention")
|
|
start_idx = max(0, prompt_len - self.sliding_window)
|
|
for i in range(prefix_len, prompt_len):
|
|
if i < start_idx:
|
|
slot_mapping[-1].append(_PAD_SLOT_ID)
|
|
continue
|
|
|
|
block_number = block_table[i // self.block_size]
|
|
block_offset = i % self.block_size
|
|
slot = block_number * self.block_size + block_offset
|
|
slot_mapping[-1].append(slot)
|
|
|
|
max_prompt_len = max(subquery_lens)
|
|
input_tokens = _make_tensor_with_pad(input_tokens,
|
|
max_prompt_len,
|
|
pad=0,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
input_positions = _make_tensor_with_pad(input_positions,
|
|
max_prompt_len,
|
|
pad=0,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
slot_mapping = _make_tensor_with_pad(slot_mapping,
|
|
max_prompt_len,
|
|
pad=_PAD_SLOT_ID,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
lora_index_mapping = [
|
|
_pad_to_max(mapping, max_prompt_len, pad=0)
|
|
for mapping in lora_index_mapping
|
|
]
|
|
context_lens_tensor = torch.tensor(context_lens,
|
|
dtype=torch.int,
|
|
device=self.device)
|
|
# Prepare prefix block tables
|
|
max_prompt_block_table_len = max(len(t) for t in prefix_block_tables)
|
|
block_tables = _make_tensor_with_pad(
|
|
prefix_block_tables,
|
|
max_len=max_prompt_block_table_len,
|
|
pad=0,
|
|
dtype=torch.int,
|
|
device=self.device,
|
|
)
|
|
start_loc_tensor = torch.arange(0,
|
|
len(prompt_lens) * max_prompt_len,
|
|
max_prompt_len,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
prompt_lens_tensor = torch.tensor(prompt_lens,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
|
|
input_metadata = InputMetadata(
|
|
is_prompt=True,
|
|
slot_mapping=slot_mapping,
|
|
prompt_lens=prompt_lens_tensor,
|
|
max_seq_len=max_prompt_len,
|
|
start_loc=start_loc_tensor,
|
|
max_context_len=None,
|
|
context_lens=context_lens_tensor,
|
|
block_tables=block_tables,
|
|
use_cuda_graph=False,
|
|
kv_cache_dtype=self.kv_cache_dtype,
|
|
)
|
|
return (input_tokens, input_positions, input_metadata, prompt_lens,
|
|
subquery_lens, lora_index_mapping, lora_prompt_mapping,
|
|
lora_requests)
|
|
|
|
def _prepare_decode(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, List[int], List[int],
|
|
Set[LoRARequest]]:
|
|
assert len(seq_group_metadata_list) > 0
|
|
input_tokens: List[List[int]] = []
|
|
input_positions: List[List[int]] = []
|
|
slot_mapping: List[List[int]] = []
|
|
context_lens: List[int] = []
|
|
block_tables: List[List[int]] = []
|
|
lora_index_mapping: List[int] = []
|
|
lora_prompt_mapping: List[int] = []
|
|
lora_requests: Set[LoRARequest] = set()
|
|
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
assert not seq_group_metadata.is_prompt
|
|
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
lora_id = seq_group_metadata.lora_int_id
|
|
|
|
if lora_id > 0:
|
|
lora_requests.add(seq_group_metadata.lora_request)
|
|
|
|
for seq_id in seq_ids:
|
|
seq_data = seq_group_metadata.seq_data[seq_id]
|
|
generation_token = seq_data.get_last_token_id()
|
|
input_tokens.append([generation_token])
|
|
|
|
seq_len = seq_data.get_len()
|
|
position = seq_len - 1
|
|
input_positions.append([position])
|
|
|
|
context_len = seq_len if self.sliding_window is None else min(
|
|
seq_len, self.sliding_window)
|
|
context_lens.append(context_len)
|
|
|
|
block_table = seq_group_metadata.block_tables[seq_id]
|
|
block_number = block_table[position // self.block_size]
|
|
block_offset = position % self.block_size
|
|
slot = block_number * self.block_size + block_offset
|
|
slot_mapping.append([slot])
|
|
lora_index_mapping.append([lora_id])
|
|
lora_prompt_mapping.append(lora_id)
|
|
|
|
if self.sliding_window is not None:
|
|
sliding_window_blocks = (self.sliding_window //
|
|
self.block_size)
|
|
block_table = block_table[-sliding_window_blocks:]
|
|
block_tables.append(block_table)
|
|
|
|
batch_size = len(input_tokens)
|
|
max_context_len = max(context_lens)
|
|
use_captured_graph = (
|
|
not self.model_config.enforce_eager
|
|
and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
|
|
and max_context_len <= self.max_context_len_to_capture)
|
|
if use_captured_graph:
|
|
# Pad the input tokens, positions, and slot mapping to match the
|
|
# batch size of the captured graph.
|
|
graph_batch_size = _get_graph_batch_size(batch_size)
|
|
assert graph_batch_size >= batch_size
|
|
for _ in range(graph_batch_size - batch_size):
|
|
input_tokens.append([])
|
|
input_positions.append([])
|
|
slot_mapping.append([])
|
|
context_lens.append(1)
|
|
block_tables.append([])
|
|
batch_size = graph_batch_size
|
|
|
|
input_tokens = _make_tensor_with_pad(input_tokens,
|
|
max_len=1,
|
|
pad=0,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
input_positions = _make_tensor_with_pad(input_positions,
|
|
max_len=1,
|
|
pad=0,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
slot_mapping = _make_tensor_with_pad(slot_mapping,
|
|
max_len=1,
|
|
pad=_PAD_SLOT_ID,
|
|
dtype=torch.long,
|
|
device=self.device)
|
|
context_lens = torch.tensor(context_lens,
|
|
dtype=torch.int,
|
|
device=self.device)
|
|
|
|
if use_captured_graph:
|
|
# The shape of graph_block_tables is
|
|
# [max batch size, max context len // block size].
|
|
input_block_tables = self.graph_block_tables[:batch_size]
|
|
for i, block_table in enumerate(block_tables):
|
|
if block_table:
|
|
input_block_tables[i, :len(block_table)] = block_table
|
|
block_tables = torch.tensor(input_block_tables, device=self.device)
|
|
else:
|
|
max_block_table_len = max(
|
|
len(block_table) for block_table in block_tables)
|
|
block_tables = _make_tensor_with_pad(
|
|
block_tables,
|
|
max_len=max_block_table_len,
|
|
pad=0,
|
|
dtype=torch.int,
|
|
device=self.device,
|
|
)
|
|
|
|
lora_index_mapping = [
|
|
_pad_to_max(mapping, 1, pad=0) for mapping in lora_index_mapping
|
|
]
|
|
|
|
input_metadata = InputMetadata(
|
|
is_prompt=False,
|
|
slot_mapping=slot_mapping,
|
|
prompt_lens=None,
|
|
max_seq_len=None,
|
|
start_loc=None,
|
|
max_context_len=max_context_len,
|
|
context_lens=context_lens,
|
|
block_tables=block_tables,
|
|
use_cuda_graph=use_captured_graph,
|
|
kv_cache_dtype=self.kv_cache_dtype,
|
|
)
|
|
return (input_tokens, input_positions, input_metadata,
|
|
lora_index_mapping, lora_prompt_mapping, lora_requests)
|
|
|
|
def _prepare_sample(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
prompt_lens: List[int],
|
|
subquery_lens: Optional[List[int]],
|
|
) -> SamplingMetadata:
|
|
seq_groups: List[Tuple[List[int], SamplingParams]] = []
|
|
selected_token_indices: List[int] = []
|
|
selected_token_start_idx = 0
|
|
categorized_sample_indices = {t: [] for t in SamplingType}
|
|
categorized_sample_indices_start_idx = 0
|
|
|
|
max_subquery_len = max(subquery_lens) if subquery_lens else 1
|
|
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
sampling_params = seq_group_metadata.sampling_params
|
|
seq_groups.append((seq_ids, sampling_params))
|
|
|
|
if seq_group_metadata.is_prompt:
|
|
assert len(seq_ids) == 1
|
|
assert subquery_lens is not None
|
|
subquery_len = subquery_lens[i]
|
|
if sampling_params.prompt_logprobs is not None:
|
|
# NOTE: prompt token positions do not need sample, skip
|
|
categorized_sample_indices_start_idx += subquery_len - 1
|
|
|
|
categorized_sample_indices[
|
|
sampling_params.sampling_type].append(
|
|
categorized_sample_indices_start_idx)
|
|
categorized_sample_indices_start_idx += 1
|
|
|
|
if sampling_params.prompt_logprobs is not None:
|
|
selected_token_indices.extend(
|
|
range(selected_token_start_idx,
|
|
selected_token_start_idx + subquery_len - 1))
|
|
selected_token_indices.append(selected_token_start_idx +
|
|
subquery_len - 1)
|
|
selected_token_start_idx += max_subquery_len
|
|
else:
|
|
num_seqs = len(seq_ids)
|
|
selected_token_indices.extend(
|
|
range(selected_token_start_idx,
|
|
selected_token_start_idx + num_seqs))
|
|
selected_token_start_idx += num_seqs
|
|
|
|
categorized_sample_indices[
|
|
sampling_params.sampling_type].extend(
|
|
range(categorized_sample_indices_start_idx,
|
|
categorized_sample_indices_start_idx + num_seqs))
|
|
categorized_sample_indices_start_idx += num_seqs
|
|
|
|
selected_token_indices = _async_h2d(selected_token_indices,
|
|
dtype=torch.long,
|
|
target_device=self.device,
|
|
pin_memory=not self.in_wsl)
|
|
categorized_sample_indices = {
|
|
t: _async_h2d(seq_ids,
|
|
dtype=torch.int,
|
|
target_device=self.device,
|
|
pin_memory=not self.in_wsl)
|
|
for t, seq_ids in categorized_sample_indices.items()
|
|
}
|
|
|
|
seq_data: Dict[int, SequenceData] = {}
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
seq_data.update(seq_group_metadata.seq_data)
|
|
|
|
sampling_metadata = SamplingMetadata(
|
|
seq_groups=seq_groups,
|
|
seq_data=seq_data,
|
|
prompt_lens=prompt_lens,
|
|
selected_token_indices=selected_token_indices,
|
|
categorized_sample_indices=categorized_sample_indices,
|
|
)
|
|
return sampling_metadata
|
|
|
|
def prepare_input_tensors(
|
|
self,
|
|
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
|
|
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, SamplingMetadata,
|
|
Set[int], LoRAMapping]:
|
|
if self.is_driver_worker:
|
|
# NOTE: We assume that all sequences in the group are all prompts or
|
|
# all decodes.
|
|
is_prompt = seq_group_metadata_list[0].is_prompt
|
|
# Prepare input tensors.
|
|
if is_prompt:
|
|
(input_tokens, input_positions, input_metadata, prompt_lens,
|
|
subquery_lens, lora_index_mapping, lora_prompt_mapping,
|
|
lora_requests) = self._prepare_prompt(seq_group_metadata_list)
|
|
else:
|
|
(input_tokens, input_positions, input_metadata,
|
|
lora_index_mapping, lora_prompt_mapping,
|
|
lora_requests) = self._prepare_decode(seq_group_metadata_list)
|
|
prompt_lens = []
|
|
subquery_lens = None
|
|
sampling_metadata = self._prepare_sample(seq_group_metadata_list,
|
|
prompt_lens,
|
|
subquery_lens)
|
|
|
|
if self.lora_config:
|
|
flat_lora_index_mapping = [
|
|
item for sublist in lora_index_mapping for item in sublist
|
|
]
|
|
lora_mapping = LoRAMapping(
|
|
flat_lora_index_mapping,
|
|
lora_prompt_mapping,
|
|
)
|
|
else:
|
|
lora_mapping = None
|
|
|
|
# Broadcast the metadata.
|
|
metadata_dict = {
|
|
"input_tokens": input_tokens,
|
|
"input_positions": input_positions,
|
|
"is_prompt": input_metadata.is_prompt,
|
|
"slot_mapping": input_metadata.slot_mapping,
|
|
"prompt_lens": input_metadata.prompt_lens,
|
|
"max_seq_len": input_metadata.max_seq_len,
|
|
"start_loc": input_metadata.start_loc,
|
|
"max_context_len": input_metadata.max_context_len,
|
|
"context_lens": input_metadata.context_lens,
|
|
"block_tables": input_metadata.block_tables,
|
|
"use_cuda_graph": input_metadata.use_cuda_graph,
|
|
"kv_cache_dtype": input_metadata.kv_cache_dtype,
|
|
"selected_token_indices":
|
|
sampling_metadata.selected_token_indices,
|
|
"lora_requests": lora_requests,
|
|
"lora_mapping": lora_mapping,
|
|
}
|
|
broadcast_tensor_dict(metadata_dict, src=0)
|
|
else:
|
|
metadata_dict = broadcast_tensor_dict(src=0)
|
|
input_tokens = metadata_dict["input_tokens"]
|
|
input_positions = metadata_dict["input_positions"]
|
|
lora_mapping = metadata_dict["lora_mapping"]
|
|
lora_requests = metadata_dict["lora_requests"]
|
|
input_metadata = InputMetadata(
|
|
is_prompt=metadata_dict["is_prompt"],
|
|
slot_mapping=metadata_dict["slot_mapping"],
|
|
prompt_lens=metadata_dict["prompt_lens"],
|
|
max_seq_len=metadata_dict["max_seq_len"],
|
|
start_loc=metadata_dict["start_loc"],
|
|
max_context_len=metadata_dict["max_context_len"],
|
|
context_lens=metadata_dict["context_lens"],
|
|
block_tables=metadata_dict["block_tables"],
|
|
use_cuda_graph=metadata_dict["use_cuda_graph"],
|
|
kv_cache_dtype=metadata_dict["kv_cache_dtype"],
|
|
)
|
|
sampling_metadata = SamplingMetadata(
|
|
seq_groups=None,
|
|
seq_data=None,
|
|
prompt_lens=None,
|
|
selected_token_indices=metadata_dict["selected_token_indices"],
|
|
categorized_sample_indices=None,
|
|
perform_sampling=False,
|
|
)
|
|
|
|
return (input_tokens, input_positions, input_metadata,
|
|
sampling_metadata, lora_requests, lora_mapping)
|
|
|
|
@torch.inference_mode()
|
|
def execute_model(
|
|
self,
|
|
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
|
|
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
|
|
) -> Optional[SamplerOutput]:
|
|
(input_tokens, input_positions, input_metadata, sampling_metadata,
|
|
lora_requests,
|
|
lora_mapping) = self.prepare_input_tensors(seq_group_metadata_list)
|
|
|
|
if self.lora_config:
|
|
self.set_active_loras(lora_requests, lora_mapping)
|
|
|
|
# Execute the model.
|
|
if input_metadata.use_cuda_graph:
|
|
graph_batch_size = input_tokens.shape[0]
|
|
model_executable = self.graph_runners[graph_batch_size]
|
|
else:
|
|
model_executable = self.model
|
|
hidden_states = model_executable(
|
|
input_ids=input_tokens,
|
|
positions=input_positions,
|
|
kv_caches=kv_caches,
|
|
input_metadata=input_metadata,
|
|
)
|
|
|
|
# Sample the next token.
|
|
output = self.model.sample(
|
|
hidden_states=hidden_states,
|
|
sampling_metadata=sampling_metadata,
|
|
)
|
|
return output
|
|
|
|
@torch.inference_mode()
|
|
def profile_run(self) -> None:
|
|
# Enable top-k sampling to reflect the accurate memory usage.
|
|
vocab_size = self.model_config.get_vocab_size()
|
|
sampling_params = SamplingParams(top_p=0.99, top_k=vocab_size - 1)
|
|
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
|
|
max_num_seqs = self.scheduler_config.max_num_seqs
|
|
|
|
# This represents the maximum number of different requests
|
|
# that will have unique loras, an therefore the max amount of memory
|
|
# consumption create dummy lora request copies from the lora request
|
|
# passed in, which contains a lora from the lora warmup path.
|
|
dummy_lora_requests = []
|
|
dummy_lora_requests_per_seq = []
|
|
if self.lora_config:
|
|
for idx in range(self.lora_config.max_loras):
|
|
lora_id = idx + 1
|
|
dummy_lora_request = LoRARequest(
|
|
lora_name=f"warmup_{lora_id}",
|
|
lora_int_id=lora_id,
|
|
lora_local_path="/not/a/real/path",
|
|
)
|
|
self.lora_manager.add_dummy_lora(dummy_lora_request,
|
|
rank=LORA_WARMUP_RANK)
|
|
dummy_lora_requests.append(dummy_lora_request)
|
|
dummy_lora_requests_per_seq = [
|
|
dummy_lora_requests[idx % len(dummy_lora_requests)]
|
|
for idx in range(max_num_seqs)
|
|
]
|
|
|
|
# Profile memory usage with max_num_sequences sequences and the total
|
|
# number of tokens equal to max_num_batched_tokens.
|
|
seqs: List[SequenceGroupMetadata] = []
|
|
for group_id in range(max_num_seqs):
|
|
seq_len = (max_num_batched_tokens // max_num_seqs +
|
|
(group_id < max_num_batched_tokens % max_num_seqs))
|
|
seq_data = SequenceData([0] * seq_len)
|
|
seq = SequenceGroupMetadata(
|
|
request_id=str(group_id),
|
|
is_prompt=True,
|
|
seq_data={group_id: seq_data},
|
|
sampling_params=sampling_params,
|
|
block_tables=None,
|
|
lora_request=dummy_lora_requests_per_seq[group_id]
|
|
if dummy_lora_requests_per_seq else None,
|
|
)
|
|
seqs.append(seq)
|
|
|
|
# Run the model with the dummy inputs.
|
|
num_layers = self.model_config.get_num_layers(self.parallel_config)
|
|
kv_caches = [(None, None)] * num_layers
|
|
self.execute_model(seqs, kv_caches)
|
|
torch.cuda.synchronize()
|
|
return
|
|
|
|
def remove_all_loras(self) -> bool:
|
|
if not self.lora_manager:
|
|
raise RuntimeError("LoRA is not enabled.")
|
|
return self.lora_manager.remove_all_loras()
|
|
|
|
def set_active_loras(self, lora_requests: List[LoRARequest],
|
|
lora_mapping: LoRAMapping) -> None:
|
|
if not self.lora_manager:
|
|
raise RuntimeError("LoRA is not enabled.")
|
|
self.lora_manager.set_active_loras(lora_requests, lora_mapping)
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
if not self.lora_manager:
|
|
raise RuntimeError("LoRA is not enabled.")
|
|
return self.lora_manager.add_lora(lora_request)
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
if not self.lora_manager:
|
|
raise RuntimeError("LoRA is not enabled.")
|
|
return self.lora_manager.remove_lora(lora_id)
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
if not self.lora_manager:
|
|
raise RuntimeError("LoRA is not enabled.")
|
|
return self.lora_manager.list_loras()
|
|
|
|
@torch.inference_mode()
|
|
def capture_model(self, kv_caches: List[KVCache]) -> None:
|
|
assert not self.model_config.enforce_eager
|
|
logger.info("Capturing the model for CUDA graphs. This may lead to "
|
|
"unexpected consequences if the model is not static. To "
|
|
"run the model in eager mode, set 'enforce_eager=True' or "
|
|
"use '--enforce-eager' in the CLI.")
|
|
logger.info("CUDA graphs can take additional 1~3 GiB memory per GPU. "
|
|
"If you are running out of memory, consider decreasing "
|
|
"`gpu_memory_utilization` or enforcing eager mode. "
|
|
"You can also reduce the `max_num_seqs` as needed "
|
|
"to decrease memory usage.")
|
|
start_time = time.perf_counter()
|
|
|
|
# Prepare dummy inputs. These will be reused for all batch sizes.
|
|
max_batch_size = max(_BATCH_SIZES_TO_CAPTURE)
|
|
input_tokens = torch.zeros(max_batch_size, 1, dtype=torch.long).cuda()
|
|
input_positions = torch.zeros(max_batch_size, 1,
|
|
dtype=torch.long).cuda()
|
|
slot_mapping = torch.empty(max_batch_size, 1, dtype=torch.long).cuda()
|
|
slot_mapping.fill_(_PAD_SLOT_ID)
|
|
context_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda()
|
|
block_tables = torch.from_numpy(self.graph_block_tables).cuda()
|
|
|
|
graph_batch_size = _get_graph_batch_size(
|
|
self.scheduler_config.max_num_seqs)
|
|
batch_size_capture_list = [
|
|
bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
|
|
]
|
|
|
|
# NOTE: Capturing the largest batch size first may help reduce the
|
|
# memory usage of CUDA graph.
|
|
with custom_all_reduce.capture():
|
|
for batch_size in reversed(batch_size_capture_list):
|
|
# Create dummy input_metadata.
|
|
input_metadata = InputMetadata(
|
|
is_prompt=False,
|
|
slot_mapping=slot_mapping[:batch_size],
|
|
prompt_lens=None,
|
|
max_seq_len=None,
|
|
start_loc=None,
|
|
max_context_len=self.max_context_len_to_capture,
|
|
context_lens=context_lens[:batch_size],
|
|
block_tables=block_tables[:batch_size],
|
|
use_cuda_graph=True,
|
|
kv_cache_dtype=self.kv_cache_dtype,
|
|
)
|
|
|
|
if self.lora_config:
|
|
lora_mapping = LoRAMapping(
|
|
[0] * batch_size,
|
|
[0] * batch_size,
|
|
)
|
|
self.set_active_loras(set(), lora_mapping)
|
|
|
|
graph_runner = CUDAGraphRunner(self.model)
|
|
graph_runner.capture(
|
|
input_tokens[:batch_size],
|
|
input_positions[:batch_size],
|
|
kv_caches,
|
|
input_metadata,
|
|
memory_pool=self.graph_memory_pool,
|
|
)
|
|
self.graph_memory_pool = graph_runner.graph.pool()
|
|
self.graph_runners[batch_size] = graph_runner
|
|
|
|
end_time = time.perf_counter()
|
|
elapsed_time = end_time - start_time
|
|
# This usually takes < 10 seconds.
|
|
logger.info(f"Graph capturing finished in {elapsed_time:.0f} secs.")
|
|
|
|
|
|
class CUDAGraphRunner:
|
|
|
|
def __init__(self, model: nn.Module):
|
|
self.model = model
|
|
self.graph = None
|
|
self.input_buffers: Dict[str, torch.Tensor] = {}
|
|
self.output_buffers: Dict[str, torch.Tensor] = {}
|
|
|
|
def capture(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
memory_pool,
|
|
) -> None:
|
|
assert self.graph is None
|
|
# Run the model once without capturing the graph.
|
|
# This is to make sure that the captured graph does not include the
|
|
# kernel launches for initial benchmarking (e.g., Triton autotune).
|
|
self.model(
|
|
input_ids,
|
|
positions,
|
|
kv_caches,
|
|
input_metadata,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
# Capture the graph.
|
|
self.graph = torch.cuda.CUDAGraph()
|
|
with torch.cuda.graph(self.graph, pool=memory_pool):
|
|
hidden_states = self.model(
|
|
input_ids,
|
|
positions,
|
|
kv_caches,
|
|
input_metadata,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
# Save the input and output buffers.
|
|
self.input_buffers = {
|
|
"input_ids": input_ids,
|
|
"positions": positions,
|
|
"kv_caches": kv_caches,
|
|
"slot_mapping": input_metadata.slot_mapping,
|
|
"context_lens": input_metadata.context_lens,
|
|
"block_tables": input_metadata.block_tables,
|
|
}
|
|
self.output_buffers = {"hidden_states": hidden_states}
|
|
return
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
|
|
input_metadata: InputMetadata,
|
|
) -> torch.Tensor:
|
|
# KV caches are fixed tensors, so we don't need to copy them.
|
|
del kv_caches
|
|
|
|
# Copy the input tensors to the input buffers.
|
|
self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
|
|
self.input_buffers["positions"].copy_(positions, non_blocking=True)
|
|
self.input_buffers["slot_mapping"].copy_(input_metadata.slot_mapping,
|
|
non_blocking=True)
|
|
self.input_buffers["context_lens"].copy_(input_metadata.context_lens,
|
|
non_blocking=True)
|
|
self.input_buffers["block_tables"].copy_(input_metadata.block_tables,
|
|
non_blocking=True)
|
|
|
|
# Run the graph.
|
|
self.graph.replay()
|
|
|
|
# Return the output tensor.
|
|
return self.output_buffers["hidden_states"]
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.forward(*args, **kwargs)
|
|
|
|
|
|
def _pad_to_max(x: List[int], max_len: int, pad: int) -> List[int]:
|
|
assert len(x) <= max_len
|
|
return x + [pad] * (max_len - len(x))
|
|
|
|
|
|
def _make_tensor_with_pad(
|
|
x: List[List[int]],
|
|
max_len: int,
|
|
pad: int,
|
|
dtype: torch.dtype,
|
|
device: Optional[Union[str, torch.device]],
|
|
) -> torch.Tensor:
|
|
padded_x = [_pad_to_max(x_i, max_len, pad) for x_i in x]
|
|
return torch.tensor(padded_x, dtype=dtype, device=device)
|
|
|
|
|
|
def _get_graph_batch_size(batch_size: int) -> int:
|
|
if batch_size <= 2:
|
|
return batch_size
|
|
elif batch_size <= 4:
|
|
return 4
|
|
else:
|
|
return (batch_size + 7) // 8 * 8
|
|
|
|
|
|
def _async_h2d(
|
|
data: list,
|
|
dtype: torch.dtype,
|
|
target_device: Union[str, torch.device],
|
|
pin_memory: bool,
|
|
) -> torch.Tensor:
|
|
t = torch.tensor(data, dtype=dtype, pin_memory=pin_memory, device="cpu")
|
|
return t.to(device=target_device, non_blocking=True)
|