
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
207 lines
6.4 KiB
Python
207 lines
6.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from PIL import Image
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.inputs import InputProcessingContext
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.processing import ProcessingCache
|
|
from vllm.multimodal.utils import cached_get_tokenizer
|
|
|
|
from ....multimodal.utils import random_audio, random_image, random_video
|
|
from ...registry import HF_EXAMPLE_MODELS
|
|
|
|
|
|
def _test_processing_correctness(
|
|
model_id: str,
|
|
hit_rate: float,
|
|
num_batches: int,
|
|
simplify_rate: float,
|
|
):
|
|
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
|
|
model_info.check_available_online(on_fail="skip")
|
|
model_info.check_transformers_version(on_fail="skip")
|
|
|
|
model_config = ModelConfig(
|
|
model_id,
|
|
task="auto",
|
|
tokenizer=model_id,
|
|
tokenizer_mode="auto",
|
|
trust_remote_code=model_info.trust_remote_code,
|
|
seed=0,
|
|
dtype="float16",
|
|
revision=None,
|
|
hf_overrides=model_info.hf_overrides,
|
|
)
|
|
|
|
model_cls = MULTIMODAL_REGISTRY._get_model_cls(model_config)
|
|
factories = MULTIMODAL_REGISTRY._processor_factories[model_cls]
|
|
ctx = InputProcessingContext(
|
|
model_config,
|
|
tokenizer=cached_get_tokenizer(
|
|
model_config.tokenizer,
|
|
trust_remote_code=model_info.trust_remote_code,
|
|
),
|
|
)
|
|
# Ensure that it can fit all of the data
|
|
cache = ProcessingCache(capacity=1 << 30)
|
|
|
|
processing_info = factories.info(ctx)
|
|
supported_mm_limits = processing_info.get_supported_mm_limits()
|
|
limit_mm_per_prompt = {
|
|
modality: 3 if limit is None else limit
|
|
for modality, limit in supported_mm_limits.items()
|
|
}
|
|
|
|
model_config.get_multimodal_config().limit_per_prompt = limit_mm_per_prompt
|
|
|
|
baseline_processor = factories.build_processor(ctx, cache=None)
|
|
cached_processor = factories.build_processor(ctx, cache=cache)
|
|
dummy_inputs = baseline_processor.dummy_inputs
|
|
tokenizer = baseline_processor.info.get_tokenizer()
|
|
|
|
rng = np.random.RandomState(0)
|
|
|
|
input_to_hit = {
|
|
"image": Image.new("RGB", size=(128, 128)),
|
|
"video": np.zeros((4, 128, 128, 3), dtype=np.uint8),
|
|
"audio": (np.zeros((512, )), 16000),
|
|
}
|
|
input_factory = {
|
|
"image":
|
|
partial(random_image, rng, min_wh=128, max_wh=256),
|
|
"video":
|
|
partial(random_video,
|
|
rng,
|
|
min_frames=2,
|
|
max_frames=8,
|
|
min_wh=128,
|
|
max_wh=256),
|
|
"audio":
|
|
partial(random_audio, rng, min_len=512, max_len=1024, sr=16000),
|
|
}
|
|
|
|
for batch_idx in range(num_batches):
|
|
mm_data = {
|
|
k:
|
|
[(input_to_hit[k] if rng.rand() < hit_rate else input_factory[k]())
|
|
for _ in range(rng.randint(limit))]
|
|
for k, limit in limit_mm_per_prompt.items()
|
|
}
|
|
|
|
mm_counts = {k: len(vs) for k, vs in mm_data.items()}
|
|
prompt = dummy_inputs.get_dummy_processor_inputs(
|
|
model_config.max_model_len,
|
|
mm_counts,
|
|
).prompt_text
|
|
|
|
# Drop unnecessary keys and test single -> multi conversion
|
|
if rng.rand() < simplify_rate:
|
|
for k in list(mm_data.keys()):
|
|
if not mm_data[k]:
|
|
del mm_data[k]
|
|
elif len(mm_data[k]) == 1:
|
|
mm_data[k] = mm_data[k][0]
|
|
|
|
baseline_result = baseline_processor.apply(
|
|
prompt,
|
|
mm_data=mm_data,
|
|
hf_processor_mm_kwargs={},
|
|
)
|
|
cached_result = cached_processor.apply(
|
|
prompt,
|
|
mm_data=mm_data,
|
|
hf_processor_mm_kwargs={},
|
|
)
|
|
|
|
assert baseline_result == cached_result, (
|
|
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
|
|
|
|
baseline_tokenized_result = baseline_processor.apply(
|
|
tokenizer.encode(prompt),
|
|
mm_data=mm_data,
|
|
hf_processor_mm_kwargs={},
|
|
)
|
|
|
|
assert baseline_result == baseline_tokenized_result, (
|
|
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
|
|
|
|
cached_tokenized_result = cached_processor.apply(
|
|
tokenizer.encode(prompt),
|
|
mm_data=mm_data,
|
|
hf_processor_mm_kwargs={},
|
|
)
|
|
|
|
assert cached_result == cached_tokenized_result, (
|
|
f"Failed ({batch_idx=}, {prompt=}, {mm_data=})")
|
|
|
|
|
|
# yapf: disable
|
|
# True if the model supports multiple data items of the modality per request
|
|
@pytest.mark.parametrize("model_id", [
|
|
"rhymes-ai/Aria",
|
|
"Salesforce/blip2-opt-2.7b",
|
|
"facebook/chameleon-7b",
|
|
"deepseek-ai/deepseek-vl2-tiny",
|
|
"adept/fuyu-8b",
|
|
"llava-hf/llava-1.5-7b-hf",
|
|
"llava-hf/llava-v1.6-mistral-7b-hf",
|
|
"llava-hf/LLaVA-NeXT-Video-7B-hf",
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf",
|
|
"TIGER-Lab/Mantis-8B-siglip-llama3",
|
|
"mistral-community/pixtral-12b",
|
|
"openbmb/MiniCPM-o-2_6",
|
|
"openbmb/MiniCPM-V-2_6",
|
|
"Qwen/Qwen-VL-Chat",
|
|
"Qwen/Qwen2-VL-2B-Instruct",
|
|
"Qwen/Qwen2-Audio-7B-Instruct",
|
|
"fixie-ai/ultravox-v0_3",
|
|
])
|
|
@pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0])
|
|
@pytest.mark.parametrize("num_batches", [32])
|
|
@pytest.mark.parametrize("simplify_rate", [1.0])
|
|
# yapf: enable
|
|
def test_processing_correctness(
|
|
model_id: str,
|
|
hit_rate: float,
|
|
num_batches: int,
|
|
simplify_rate: float,
|
|
):
|
|
_test_processing_correctness(
|
|
model_id,
|
|
hit_rate=hit_rate,
|
|
num_batches=num_batches,
|
|
simplify_rate=simplify_rate,
|
|
)
|
|
|
|
|
|
# yapf: disable
|
|
@pytest.mark.parametrize("model_id", ["microsoft/Phi-3-vision-128k-instruct"])
|
|
@pytest.mark.parametrize("hit_rate", [0.3, 0.5, 1.0])
|
|
@pytest.mark.parametrize("num_batches", [32])
|
|
@pytest.mark.parametrize("simplify_rate", [1.0])
|
|
# yapf: enable
|
|
def test_processing_correctness_phi3v(
|
|
model_id: str,
|
|
hit_rate: float,
|
|
num_batches: int,
|
|
simplify_rate: float,
|
|
):
|
|
# HACK - this is an attempted workaround for the following bug
|
|
# https://github.com/huggingface/transformers/issues/34307
|
|
from transformers import AutoImageProcessor # noqa: F401
|
|
from transformers import AutoProcessor # noqa: F401
|
|
|
|
AutoImageProcessor.from_pretrained(model_id, trust_remote_code=True)
|
|
|
|
_test_processing_correctness(
|
|
model_id,
|
|
hit_rate=hit_rate,
|
|
num_batches=num_batches,
|
|
simplify_rate=simplify_rate,
|
|
)
|