78 lines
2.9 KiB
ReStructuredText
78 lines
2.9 KiB
ReStructuredText
.. _spec_decode:
|
|
|
|
Speculative decoding in vLLM
|
|
============================
|
|
|
|
.. warning::
|
|
Please note that speculative decoding in vLLM is not yet optimized and does
|
|
not usually yield inter-token latency reductions for all prompt datasets or sampling parameters. The work
|
|
to optimize it is ongoing and can be followed in `this issue. <https://github.com/vllm-project/vllm/issues/4630>`_
|
|
|
|
This document shows how to use `Speculative Decoding <https://x.com/karpathy/status/1697318534555336961>`_ with vLLM.
|
|
Speculative decoding is a technique which improves inter-token latency in memory-bound LLM inference.
|
|
|
|
Speculating with a draft model
|
|
------------------------------
|
|
|
|
The following code configures vLLM to use speculative decoding with a draft model, speculating 5 tokens at a time.
|
|
|
|
.. code-block:: python
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
prompts = [
|
|
"The future of AI is",
|
|
]
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
|
|
|
llm = LLM(
|
|
model="facebook/opt-6.7b",
|
|
tensor_parallel_size=1,
|
|
speculative_model="facebook/opt-125m",
|
|
num_speculative_tokens=5,
|
|
use_v2_block_manager=True,
|
|
)
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
Speculating by matching n-grams in the prompt
|
|
---------------------------------------------
|
|
|
|
The following code configures vLLM to use speculative decoding where proposals are generated by
|
|
matching n-grams in the prompt. For more information read `this thread. <https://x.com/joao_gante/status/1747322413006643259>`_
|
|
|
|
.. code-block:: python
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
prompts = [
|
|
"The future of AI is",
|
|
]
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
|
|
|
llm = LLM(
|
|
model="facebook/opt-6.7b",
|
|
tensor_parallel_size=1,
|
|
speculative_model="[ngram]",
|
|
num_speculative_tokens=5,
|
|
ngram_prompt_lookup_max=4,
|
|
use_v2_block_manager=True,
|
|
)
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
Resources for vLLM contributors
|
|
-------------------------------
|
|
* `A Hacker's Guide to Speculative Decoding in vLLM <https://www.youtube.com/watch?v=9wNAgpX6z_4>`_
|
|
* `What is Lookahead Scheduling in vLLM? <https://docs.google.com/document/d/1Z9TvqzzBPnh5WHcRwjvK2UEeFeq5zMZb5mFE8jR0HCs/edit#heading=h.1fjfb0donq5a>`_
|
|
* `Information on batch expansion <https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8>`_
|
|
* `Dynamic speculative decoding <https://github.com/vllm-project/vllm/issues/4565>`_
|