vllm/tests/models/embedding/language/test_scoring.py
Cyrus Leung 8f10d5e393
[Misc] Split up pooling tasks (#10820)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-12-11 01:28:00 -08:00

90 lines
2.6 KiB
Python

"""Compare the embedding outputs of HF and vLLM models.
Run `pytest tests/models/embedding/language/test_embedding.py`.
"""
import math
import pytest
MODELS = [
"cross-encoder/ms-marco-MiniLM-L-6-v2", # Bert
"BAAI/bge-reranker-v2-m3", # Roberta
]
TEXTS_1 = [
"What is the capital of France?",
"What is the capital of Germany?",
]
TEXTS_2 = [
"The capital of France is Paris.",
"The capital of Germany is Berlin.",
]
@pytest.fixture(scope="module", params=MODELS)
def model_name(request):
yield request.param
@pytest.mark.parametrize("dtype", ["half"])
def test_llm_1_to_1(vllm_runner, hf_runner, model_name, dtype: str):
text_pair = [TEXTS_1[0], TEXTS_2[0]]
with hf_runner(model_name, dtype=dtype, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict([text_pair]).tolist()
with vllm_runner(model_name, task="score", dtype=dtype,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(text_pair[0], text_pair[1])
assert len(vllm_outputs) == 1
assert len(hf_outputs) == 1
assert math.isclose(hf_outputs[0], vllm_outputs[0][0], rel_tol=0.01)
@pytest.mark.parametrize("dtype", ["half"])
def test_llm_1_to_N(vllm_runner, hf_runner, model_name, dtype: str):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[0], TEXTS_2[1]],
]
with hf_runner(model_name, dtype=dtype, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict(text_pairs).tolist()
with vllm_runner(model_name, task="score", dtype=dtype,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1[0], TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert math.isclose(hf_outputs[0], vllm_outputs[0][0], rel_tol=0.01)
assert math.isclose(hf_outputs[1], vllm_outputs[1][0], rel_tol=0.01)
@pytest.mark.parametrize("dtype", ["half"])
def test_llm_N_to_N(vllm_runner, hf_runner, model_name, dtype: str):
text_pairs = [
[TEXTS_1[0], TEXTS_2[0]],
[TEXTS_1[1], TEXTS_2[1]],
]
with hf_runner(model_name, dtype=dtype, is_cross_encoder=True) as hf_model:
hf_outputs = hf_model.predict(text_pairs).tolist()
with vllm_runner(model_name, task="score", dtype=dtype,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.score(TEXTS_1, TEXTS_2)
assert len(vllm_outputs) == 2
assert len(hf_outputs) == 2
assert math.isclose(hf_outputs[0], vllm_outputs[0][0], rel_tol=0.01)
assert math.isclose(hf_outputs[1], vllm_outputs[1][0], rel_tol=0.01)