71 lines
2.8 KiB
Python
71 lines
2.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Tests for Idefics3's multimodal preprocessing kwargs."""
|
|
import pytest
|
|
from transformers import Idefics3Config
|
|
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
|
|
|
|
from ....conftest import _ImageAssets
|
|
from ...utils import build_model_context
|
|
|
|
|
|
@pytest.mark.parametrize("model_id", ["HuggingFaceM4/Idefics3-8B-Llama3"])
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
("mm_processor_kwargs", "expected_toks_per_img"),
|
|
[
|
|
({"size": {"longest_edge": 364}}, 169),
|
|
({"size": {"longest_edge": 728}}, 169 * (2**2 + 1)),
|
|
])
|
|
# yapf: enable
|
|
@pytest.mark.parametrize("num_imgs", [1, 2])
|
|
@pytest.mark.parametrize("kwargs_on_init", [True, False])
|
|
def test_processor_override(
|
|
image_assets: _ImageAssets,
|
|
model_id: str,
|
|
mm_processor_kwargs: dict[str, object],
|
|
expected_toks_per_img: int,
|
|
num_imgs: int,
|
|
kwargs_on_init: bool,
|
|
):
|
|
"""Ensure input_processor_for_idefics3 handles num_crops properly."""
|
|
# Same as the previous test - don't initialize mm_processor_kwargs
|
|
# in this test and assume that the kwargs will be correctly expanded by
|
|
# the partial when calling the custom input processor.
|
|
ctx = build_model_context(
|
|
model_id,
|
|
mm_processor_kwargs=mm_processor_kwargs if kwargs_on_init else None,
|
|
limit_mm_per_prompt={"image": num_imgs},
|
|
)
|
|
tokenizer = cached_tokenizer_from_config(ctx.model_config)
|
|
processor = MULTIMODAL_REGISTRY.create_processor(
|
|
ctx.model_config,
|
|
tokenizer=tokenizer,
|
|
)
|
|
hf_processor_mm_kwargs = {} if kwargs_on_init else mm_processor_kwargs
|
|
|
|
# Build the image str / prompt based on the number of images we pass
|
|
placeholders = "<image>" if num_imgs == 1 else "\n".join(
|
|
f"Image-{i}: <image>\n" for i in range(1, num_imgs + 1))
|
|
prompt = f"<|begin_of_text|>User:{placeholders}\n<end_of_utterance>\nAssistant:" # noqa: E501
|
|
|
|
# Build mm_data
|
|
image_size = ctx.get_hf_config(Idefics3Config).vision_config.image_size
|
|
dummy_image_size = (image_size * 4, image_size * 4)
|
|
dummy_image = image_assets[0].pil_image.resize(dummy_image_size)
|
|
mm_data = {"image": [dummy_image] * num_imgs}
|
|
|
|
processed_inputs = processor.apply(prompt, mm_data, hf_processor_mm_kwargs)
|
|
|
|
# Ensure the placeholders format are correct
|
|
hf_processor = processor.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
hf_processed_inputs = hf_processor(text=prompt, images=mm_data["image"])
|
|
assert processed_inputs["prompt_token_ids"] == hf_processed_inputs[
|
|
"input_ids"][0]
|
|
|
|
# Ensure we have the right number of placeholders per num_crops size
|
|
image_token_id = ctx.get_hf_config().image_token_id
|
|
img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id)
|
|
assert img_tok_count == expected_toks_per_img * num_imgs
|