vllm/vllm/model_executor/models/interfaces.py

310 lines
8.7 KiB
Python

from typing import (TYPE_CHECKING, ClassVar, Dict, List, Literal, Optional,
Protocol, Type, Union, overload, runtime_checkable)
import torch
from typing_extensions import TypeIs
from vllm.logger import init_logger
from vllm.utils import supports_kw
if TYPE_CHECKING:
from vllm.config import LoRAConfig, MultiModalConfig, SchedulerConfig
from vllm.sequence import IntermediateTensors
logger = init_logger(__name__)
@runtime_checkable
class SupportsMultiModal(Protocol):
"""The interface required for all multi-modal models."""
supports_multimodal: ClassVar[Literal[True]] = True
"""
A flag that indicates this model supports multi-modal inputs.
Note:
There is no need to redefine this flag if this class is in the
MRO of your model class.
"""
def __init__(self, *, multimodal_config: "MultiModalConfig") -> None:
...
# We can't use runtime_checkable with ClassVar for issubclass checks
# so we need to treat the class as an instance and use isinstance instead
@runtime_checkable
class _SupportsMultiModalType(Protocol):
supports_multimodal: Literal[True]
def __call__(self, *, multimodal_config: "MultiModalConfig") -> None:
...
@overload
def supports_multimodal(
model: Type[object]) -> TypeIs[Type[SupportsMultiModal]]:
...
@overload
def supports_multimodal(model: object) -> TypeIs[SupportsMultiModal]:
...
def supports_multimodal(
model: Union[Type[object], object],
) -> Union[TypeIs[Type[SupportsMultiModal]], TypeIs[SupportsMultiModal]]:
if isinstance(model, type):
return isinstance(model, _SupportsMultiModalType)
return isinstance(model, SupportsMultiModal)
@runtime_checkable
class SupportsLoRA(Protocol):
"""The interface required for all models that support LoRA."""
supports_lora: ClassVar[Literal[True]] = True
"""
A flag that indicates this model supports LoRA.
Note:
There is no need to redefine this flag if this class is in the
MRO of your model class.
"""
packed_modules_mapping: ClassVar[Dict[str, List[str]]]
supported_lora_modules: ClassVar[List[str]]
embedding_modules: ClassVar[Dict[str, str]]
embedding_padding_modules: ClassVar[List[str]]
# lora_config is None when LoRA is not enabled
def __init__(self, *, lora_config: Optional["LoRAConfig"] = None) -> None:
...
# We can't use runtime_checkable with ClassVar for issubclass checks
# so we need to treat the class as an instance and use isinstance instead
@runtime_checkable
class _SupportsLoRAType(Protocol):
supports_lora: Literal[True]
packed_modules_mapping: Dict[str, List[str]]
supported_lora_modules: List[str]
embedding_modules: Dict[str, str]
embedding_padding_modules: List[str]
def __call__(self, *, lora_config: Optional["LoRAConfig"] = None) -> None:
...
@overload
def supports_lora(model: Type[object]) -> TypeIs[Type[SupportsLoRA]]:
...
@overload
def supports_lora(model: object) -> TypeIs[SupportsLoRA]:
...
def supports_lora(
model: Union[Type[object], object],
) -> Union[TypeIs[Type[SupportsLoRA]], TypeIs[SupportsLoRA]]:
result = _supports_lora(model)
if not result:
lora_attrs = (
"packed_modules_mapping",
"supported_lora_modules",
"embedding_modules",
"embedding_padding_modules",
)
missing_attrs = tuple(attr for attr in lora_attrs
if not hasattr(model, attr))
if getattr(model, "supports_lora", False):
if missing_attrs:
logger.warning(
"The model (%s) sets `supports_lora=True`, "
"but is missing LoRA-specific attributes: %s",
model,
missing_attrs,
)
else:
if not missing_attrs:
logger.warning(
"The model (%s) contains all LoRA-specific attributes, "
"but does not set `supports_lora=True`.", model)
return result
def _supports_lora(model: Union[Type[object], object]) -> bool:
if isinstance(model, type):
return isinstance(model, _SupportsLoRAType)
return isinstance(model, SupportsLoRA)
@runtime_checkable
class SupportsPP(Protocol):
"""The interface required for all models that support pipeline parallel."""
supports_pp: ClassVar[Literal[True]] = True
"""
A flag that indicates this model supports pipeline parallel.
Note:
There is no need to redefine this flag if this class is in the
MRO of your model class.
"""
def make_empty_intermediate_tensors(
self,
batch_size: int,
dtype: torch.dtype,
device: torch.device,
) -> "IntermediateTensors":
"""Called when PP rank > 0 for profiling purposes."""
...
def forward(
self,
*,
intermediate_tensors: Optional["IntermediateTensors"],
) -> Union[torch.Tensor, "IntermediateTensors"]:
"""
Accept :class:`IntermediateTensors` when PP rank > 0.
Return :class:`IntermediateTensors` only for the last PP rank.
"""
...
# We can't use runtime_checkable with ClassVar for issubclass checks
# so we need to treat the class as an instance and use isinstance instead
@runtime_checkable
class _SupportsPPType(Protocol):
supports_pp: Literal[True]
def make_empty_intermediate_tensors(
self,
batch_size: int,
dtype: torch.dtype,
device: torch.device,
) -> "IntermediateTensors":
...
def forward(
self,
*,
intermediate_tensors: Optional["IntermediateTensors"],
) -> Union[torch.Tensor, "IntermediateTensors"]:
...
@overload
def supports_pp(model: Type[object]) -> TypeIs[Type[SupportsPP]]:
...
@overload
def supports_pp(model: object) -> TypeIs[SupportsPP]:
...
def supports_pp(
model: Union[Type[object], object],
) -> Union[bool, TypeIs[Type[SupportsPP]], TypeIs[SupportsPP]]:
supports_attributes = _supports_pp_attributes(model)
supports_inspect = _supports_pp_inspect(model)
if supports_attributes and not supports_inspect:
logger.warning(
"The model (%s) sets `supports_pp=True`, but does not accept "
"`intermediate_tensors` in its `forward` method", model)
if not supports_attributes:
pp_attrs = ("make_empty_intermediate_tensors", )
missing_attrs = tuple(attr for attr in pp_attrs
if not hasattr(model, attr))
if getattr(model, "supports_pp", False):
if missing_attrs:
logger.warning(
"The model (%s) sets `supports_pp=True`, "
"but is missing PP-specific attributes: %s",
model,
missing_attrs,
)
else:
if not missing_attrs:
logger.warning(
"The model (%s) contains all PP-specific attributes, "
"but does not set `supports_pp=True`.", model)
return supports_attributes and supports_inspect
def _supports_pp_attributes(model: Union[Type[object], object]) -> bool:
if isinstance(model, type):
return isinstance(model, _SupportsPPType)
return isinstance(model, SupportsPP)
def _supports_pp_inspect(model: Union[Type[object], object]) -> bool:
model_forward = getattr(model, "forward", None)
if not callable(model_forward):
return False
return supports_kw(model_forward, "intermediate_tensors")
@runtime_checkable
class HasInnerState(Protocol):
"""The interface required for all models that has inner state."""
has_inner_state: ClassVar[Literal[True]] = True
"""
A flag that indicates this model has inner state.
Models that has inner state usually need access to the scheduler_config
for max_num_seqs ,etc... (Currently only used by Jamba)
"""
def __init__(self,
*,
scheduler_config: Optional["SchedulerConfig"] = None) -> None:
...
@runtime_checkable
class _HasInnerStateType(Protocol):
has_inner_state: ClassVar[Literal[True]]
def __init__(self,
*,
scheduler_config: Optional["SchedulerConfig"] = None) -> None:
...
@overload
def has_inner_state(model: object) -> TypeIs[HasInnerState]:
...
@overload
def has_inner_state(model: Type[object]) -> TypeIs[Type[HasInnerState]]:
...
def has_inner_state(
model: Union[Type[object], object]
) -> Union[TypeIs[Type[HasInnerState]], TypeIs[HasInnerState]]:
if isinstance(model, type):
return isinstance(model, _HasInnerStateType)
return isinstance(model, HasInnerState)