Lu Fang 8c0d15d5c5
[Misc][Easy] Annotate unused vars in the csrc files (#14798)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-03-15 12:40:09 +08:00

1857 lines
61 KiB
Plaintext

/*
Adapted from https://github.com/turboderp/exllamav2 and
https://github.com/qwopqwop200/GPTQ-for-LLaMa
*/
#include <cstdint>
#include <cstdio>
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "compat.cuh"
#include "matrix_view.cuh"
#include "qdq_2.cuh"
#include "qdq_3.cuh"
#include "qdq_4.cuh"
#include "qdq_8.cuh"
namespace vllm {
namespace gptq {
#define BLOCK_KN_SIZE 128
#define BLOCK_M_SIZE_MAX 8
#define MAX_GROUPS_IN_BLOCK (BLOCK_KN_SIZE / 32)
#define MAX_Q_GEMM_ROWS 50
#define MAX_Q_GEMM_ROWS_8BIT 24
#define MAX_ALT_GEMM_ROWS 8
#define THREADS_X 32
#define THREADS_Y 32
#define DIVIDE(x, size) (((x) + (size) - 1) / (size))
#if defined(USE_ROCM)
#include <hipblas/hipblas.h>
__host__ __forceinline__ hipblasStatus_t __compat_hipblasHgemm(
hipblasHandle_t handle, hipblasOperation_t transA,
hipblasOperation_t transB, int m, int n, int k, const half* alpha,
const half* AP, int lda, const half* BP, int ldb, const half* beta,
half* CP, int ldc) {
return hipblasHgemm(handle, transA, transB, m, n, k,
reinterpret_cast<const hipblasHalf*>(alpha),
reinterpret_cast<const hipblasHalf*>(AP), lda,
reinterpret_cast<const hipblasHalf*>(BP), ldb,
reinterpret_cast<const hipblasHalf*>(beta),
reinterpret_cast<hipblasHalf*>(CP), ldc);
}
#define hipblasHgemm __compat_hipblasHgemm
// Previous version of PyTorch were converting to rocBLAS instead of hipBLAS.
#define rocblas_operation_none HIPBLAS_OP_N
#define rocblas_hgemm __compat_hipblasHgemm
#endif
__forceinline__ __device__ half2 dot22_8(half2 (&dq)[4], const half* a_ptr,
const half2 g_result) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __hadd2(result, g_result);
}
__forceinline__ __device__ float dot22_8_f(half2 (&dq)[4], const half* a_ptr) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __half2float(__low2half(result)) + __half2float(__high2half(result));
}
__forceinline__ __device__ half2 dot22_8(half2 (&dq)[4], const half* a_ptr,
const half2 g_result,
const half qs_h) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __hfma2(result, __halves2half2(qs_h, qs_h), g_result);
}
__forceinline__ __device__ half2 dot22_16(half2 (&dq)[8], const half* a_ptr,
const half2 g_result,
const half qs_h) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result);
return __hfma2(result, __halves2half2(qs_h, qs_h), g_result);
}
__forceinline__ __device__ half2 dot22_32(half2 (&dq)[16], const half* a_ptr,
const half2 g_result,
const half qs_h) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result);
return __hfma2(result, __halves2half2(qs_h, qs_h), g_result);
}
__forceinline__ __device__ float dot22_8_f(half2 (&dq)[4], const half* a_ptr,
const float g_result,
const float qs_f) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
float result_f =
__half2float(__low2half(result)) + __half2float(__high2half(result));
return fma(result_f, qs_f, g_result);
}
__forceinline__ __device__ float dot22_16_f(half2 (&dq)[8], const half* a_ptr,
const float g_result,
const float qs_f) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result);
float result_f =
__half2float(__low2half(result)) + __half2float(__high2half(result));
return fma(result_f, qs_f, g_result);
}
__forceinline__ __device__ float dot22_32_f(half2 (&dq)[16], const half* a_ptr,
const float g_result,
const float qs_f) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result);
float result_f =
__half2float(__low2half(result)) + __half2float(__high2half(result));
return fma(result_f, qs_f, g_result);
}
__forceinline__ __device__ half dot22_8_h(half2 (&dq)[4], const half* a_ptr,
const half g_result,
const half qs_h) {
// Use FP32 accumulator to avoid potential overflow since unscaled weights are
// in the range -128..127
float result = {};
#pragma unroll
for (int i = 0; i < 4; i++) {
half2 w01 = dq[i];
float w0 = __low2float(w01);
float w1 = __high2float(w01);
float x0 = __half2float(*a_ptr++);
float x1 = __half2float(*a_ptr++);
result = fma(w0, x0, result);
result = fma(w1, x1, result);
}
float qs = __half2float(qs_h);
result *= qs;
half result_h = __float2half_rn(result);
return __hadd(result_h, g_result);
}
__forceinline__ __device__ half dot22_16_h(half2 (&dq)[8], const half* a_ptr,
const half g_result,
const half qs_h) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 8; i++) result = __hfma2(dq[i], *a2_ptr++, result);
half result_h = __hadd(__low2half(result), __high2half(result));
return __hfma(result_h, qs_h, g_result);
}
__forceinline__ __device__ half dot22_32_h(half2 (&dq)[16], const half* a_ptr,
const half g_result,
const half qs_h) {
half2 result = {};
const half2* a2_ptr = (const half2*)a_ptr;
#pragma unroll
for (int i = 0; i < 16; i += 1) result = __hfma2(dq[i], *a2_ptr++, result);
half result_h = __hadd(__low2half(result), __high2half(result));
return __hfma(result_h, qs_h, g_result);
}
typedef void (*fp_gemm_half_q_half_gptq_kernel)(const half*, const uint32_t*,
const uint32_t*, const half*,
half*, const int, const int,
const int, const int,
const int*);
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_4bit_kernel(
const half* __restrict__ a, const uint32_t* __restrict__ b_q_weight,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, half* __restrict__ c,
const int size_m, const int size_n, const int size_k, const int groups,
const int* __restrict__ b_q_perm) {
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int t = threadIdx.x;
// Block
int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
int offset_m = blockIdx.y * m_count;
int offset_k = blockIdx.z * BLOCK_KN_SIZE;
[[maybe_unused]] int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
[[maybe_unused]] int end_m = min(offset_m + m_count, size_m);
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int n = offset_n + t * 4;
// Preload block_a
__shared__ half block_a[m_count][BLOCK_KN_SIZE];
if (offset_k + t < end_k) {
for (int m = 0; m < m_count; ++m) {
const half* a_ptr = a_.item_ptr(offset_m + m, 0);
half* block_a_ptr = block_a[m];
half a0;
if (b_q_perm)
a0 = a_ptr[b_q_perm[offset_k + t]];
else
a0 = a_ptr[offset_k + t];
block_a_ptr[t] = a0;
}
}
// Zero output
if (n >= size_n) return;
if (blockIdx.z == 0) {
for (int m = 0; m < m_count; m++)
*((uint64_t*)c_.item_ptr(offset_m + m, n)) = 0;
}
__syncthreads();
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// a, b offset
int qk = offset_k / (32 / 4);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
const half* a_ptr = &block_a[0][0];
int a_stride = BLOCK_KN_SIZE;
// Initial group
int zeros[4];
float scales[4];
half2 z1z16[4][2];
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
// Column result
float block_c[m_count][4] = {};
// Dequantize and multiply
int k = offset_k;
while (k < end_k) {
if (k == nextgroup) {
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_f(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
}
#pragma unroll
for (int j = 0; j < 4; j++) {
const int4* b_ptr4 = (int4*)b_ptr;
int4 load_int4 = *b_ptr4;
half2 dq[4][4];
dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n,
false);
dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n,
false);
dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n,
false);
dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n,
false);
#pragma unroll
for (int m = 0; m < m_count; m++) {
block_c[m][0] = fma(dot22_8_f(dq[0], a_ptr + m * a_stride), scales[0],
block_c[m][0]);
block_c[m][1] = fma(dot22_8_f(dq[1], a_ptr + m * a_stride), scales[1],
block_c[m][1]);
block_c[m][2] = fma(dot22_8_f(dq[2], a_ptr + m * a_stride), scales[2],
block_c[m][2]);
block_c[m][3] = fma(dot22_8_f(dq[3], a_ptr + m * a_stride), scales[3],
block_c[m][3]);
}
b_ptr += size_n;
a_ptr += 8;
}
k += 32;
}
for (int m = 0; m < m_count; m++) {
half2* out = (half2*)c_.item_ptr(offset_m + m, n);
half2 result01 = __halves2half2(__float2half_rn(block_c[m][0]),
__float2half_rn(block_c[m][1]));
half2 result23 = __halves2half2(__float2half_rn(block_c[m][2]),
__float2half_rn(block_c[m][3]));
atomicAdd(out, result01);
atomicAdd(out + 1, result23);
}
}
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_2bit_kernel(
const half* __restrict__ a, const uint32_t* __restrict__ b_q_weight,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, half* __restrict__ c,
const int size_m, const int size_n, const int size_k, const int groups,
const int* __restrict__ b_q_perm) {
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q2_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int t = threadIdx.x;
// Block
int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
int offset_m = blockIdx.y * m_count;
int offset_k = blockIdx.z * BLOCK_KN_SIZE;
[[maybe_unused]] int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
[[maybe_unused]] int end_m = min(offset_m + m_count, size_m);
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int n = offset_n + t * 4;
// Preload block_a
__shared__ half block_a[m_count][BLOCK_KN_SIZE];
if (offset_k + t < end_k) {
for (int m = 0; m < m_count; ++m) {
const half* a_ptr = a_.item_ptr(offset_m + m, 0);
half* block_a_ptr = block_a[m];
half a0;
if (b_q_perm)
a0 = a_ptr[b_q_perm[offset_k + t]];
else
a0 = a_ptr[offset_k + t];
block_a_ptr[t] = a0;
}
}
// Zero output
if (n >= size_n) return;
if (blockIdx.z == 0) {
for (int m = 0; m < m_count; m++)
*((uint64_t*)c_.item_ptr(offset_m + m, n)) = 0;
}
__syncthreads();
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// a, b offset
int qk = offset_k / (32 / 2);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
const half* a_ptr = &block_a[0][0];
int a_stride = BLOCK_KN_SIZE;
// Initial group
int zeros[4];
half scales[4];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4(scales, group, n);
// Column result
half block_c[m_count][4] = {};
// Dequantize and multiply
int k = offset_k;
while (k < end_k) {
if (k == nextgroup) {
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4(scales, group, n);
}
#pragma unroll
for (int j = 0; j < 1; j++) {
const int4* b_ptr4 = (int4*)b_ptr;
int4 load_int4 = *b_ptr4;
half2 dq[4][8];
dequant_2bit_16(load_int4.x, dq[0], size_n, zeros[0] + 1);
dequant_2bit_16(load_int4.y, dq[1], size_n, zeros[1] + 1);
dequant_2bit_16(load_int4.z, dq[2], size_n, zeros[2] + 1);
dequant_2bit_16(load_int4.w, dq[3], size_n, zeros[3] + 1);
#pragma unroll
for (int m = 0; m < m_count; m++) {
block_c[m][0] =
dot22_16_h(dq[0], a_ptr + m * a_stride, block_c[m][0], scales[0]);
block_c[m][1] =
dot22_16_h(dq[1], a_ptr + m * a_stride, block_c[m][1], scales[1]);
block_c[m][2] =
dot22_16_h(dq[2], a_ptr + m * a_stride, block_c[m][2], scales[2]);
block_c[m][3] =
dot22_16_h(dq[3], a_ptr + m * a_stride, block_c[m][3], scales[3]);
}
b_ptr += size_n;
a_ptr += 16;
}
k += 16;
}
for (int m = 0; m < m_count; m++) {
half2* out = (half2*)c_.item_ptr(offset_m + m, n);
half2 result01 = __halves2half2(block_c[m][0], block_c[m][1]);
half2 result23 = __halves2half2(block_c[m][2], block_c[m][3]);
atomicAdd(out, result01);
atomicAdd(out + 1, result23);
}
}
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_3bit_kernel(
const half* __restrict__ a, const uint32_t* __restrict__ b_q_weight,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, half* __restrict__ c,
const int size_m, const int size_n, const int size_k, const int groups,
const int* __restrict__ b_q_perm) {
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q3_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int t = threadIdx.x;
// Block
int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
int offset_m = blockIdx.y * m_count;
int offset_k = blockIdx.z * BLOCK_KN_SIZE;
[[maybe_unused]] int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
[[maybe_unused]] int end_m = min(offset_m + m_count, size_m);
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int n = offset_n + t * 4;
// Preload block_a
__shared__ half block_a[m_count][BLOCK_KN_SIZE];
if (offset_k + t < end_k) {
for (int m = 0; m < m_count; ++m) {
const half* a_ptr = a_.item_ptr(offset_m + m, 0);
half* block_a_ptr = block_a[m];
half a0;
if (b_q_perm)
a0 = a_ptr[b_q_perm[offset_k + t]];
else
a0 = a_ptr[offset_k + t];
block_a_ptr[t] = a0;
}
}
// Zero output
if (n >= size_n) return;
if (blockIdx.z == 0) {
for (int m = 0; m < m_count; m++)
*((uint64_t*)c_.item_ptr(offset_m + m, n)) = 0;
}
__syncthreads();
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// a, b offset
int qk = offset_k / 32 * 3;
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
const half* a_ptr = &block_a[0][0];
int a_stride = BLOCK_KN_SIZE;
// Initial group
int zeros[4];
half scales[4];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4(scales, group, n);
// Column result
half block_c[m_count][4] = {};
// Dequantize and multiply
int k = offset_k;
while (k < end_k) {
if (k == nextgroup) {
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4(scales, group, n);
}
#pragma unroll
for (int j = 0; j < 1; j++) {
int4 load_int4[3];
load_int4[0] = *((int4*)b_ptr);
b_ptr += size_n;
load_int4[1] = *((int4*)b_ptr);
b_ptr += size_n;
load_int4[2] = *((int4*)b_ptr);
b_ptr += size_n;
half2 dq[4][16];
dequant_3bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0],
size_n, zeros[0] + 1);
dequant_3bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1],
size_n, zeros[1] + 1);
dequant_3bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2],
size_n, zeros[2] + 1);
dequant_3bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3],
size_n, zeros[3] + 1);
#pragma unroll
for (int m = 0; m < m_count; m++) {
block_c[m][0] =
dot22_32_h(dq[0], a_ptr + m * a_stride, block_c[m][0], scales[0]);
block_c[m][1] =
dot22_32_h(dq[1], a_ptr + m * a_stride, block_c[m][1], scales[1]);
block_c[m][2] =
dot22_32_h(dq[2], a_ptr + m * a_stride, block_c[m][2], scales[2]);
block_c[m][3] =
dot22_32_h(dq[3], a_ptr + m * a_stride, block_c[m][3], scales[3]);
}
a_ptr += 32;
}
k += 32;
}
for (int m = 0; m < m_count; m++) {
half2* out = (half2*)c_.item_ptr(offset_m + m, n);
half2 result01 = __halves2half2(block_c[m][0], block_c[m][1]);
half2 result23 = __halves2half2(block_c[m][2], block_c[m][3]);
atomicAdd(out, result01);
atomicAdd(out + 1, result23);
}
}
template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_8bit_kernel(
const half* __restrict__ a, const uint32_t* __restrict__ b_q_weight,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, half* __restrict__ c,
const int size_m, const int size_n, const int size_k, const int groups,
const int* __restrict__ b_q_perm) {
MatrixView_half a_(a, size_m, size_k);
MatrixView_half_rw c_(c, size_m, size_n);
MatrixView_q8_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int t = threadIdx.x;
// Block
int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
int offset_m = blockIdx.y * m_count;
int offset_k = blockIdx.z * BLOCK_KN_SIZE;
[[maybe_unused]] int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
[[maybe_unused]] int end_m = min(offset_m + m_count, size_m);
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
int n = offset_n + t * 4;
// Preload block_a
__shared__ half block_a[m_count][BLOCK_KN_SIZE];
if (offset_k + t < end_k) {
for (int m = 0; m < m_count; ++m) {
const half* a_ptr = a_.item_ptr(offset_m + m, 0);
half* block_a_ptr = block_a[m];
half a0;
if (b_q_perm)
a0 = a_ptr[b_q_perm[offset_k + t]];
else
a0 = a_ptr[offset_k + t];
block_a_ptr[t] = a0;
}
}
// Zero output
if (n >= size_n) return;
if (blockIdx.z == 0) {
for (int m = 0; m < m_count; m++)
*((uint64_t*)c_.item_ptr(offset_m + m, n)) = 0;
}
__syncthreads();
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// a, b offset
int qk = offset_k / (32 / 8);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
const half* a_ptr = &block_a[0][0];
int a_stride = BLOCK_KN_SIZE;
// Initial group
int zeros[4];
half scales[4];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4(scales, group, n);
// Column result
half block_c[m_count][4] = {};
// Dequantize and multiply
int k = offset_k;
while (k < end_k) {
if (k == nextgroup) {
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4(scales, group, n);
}
#pragma unroll
for (int j = 0; j < 4; j++) {
int4 load_int4[2];
load_int4[0] = *((int4*)b_ptr);
b_ptr += size_n;
load_int4[1] = *((int4*)b_ptr);
b_ptr += size_n;
half2 dq[4][4];
dequant_8bit_8(load_int4[0].x, load_int4[1].x, dq[0], size_n,
zeros[0] + 1);
dequant_8bit_8(load_int4[0].y, load_int4[1].y, dq[1], size_n,
zeros[1] + 1);
dequant_8bit_8(load_int4[0].z, load_int4[1].z, dq[2], size_n,
zeros[2] + 1);
dequant_8bit_8(load_int4[0].w, load_int4[1].w, dq[3], size_n,
zeros[3] + 1);
for (int m = 0; m < m_count; m++) {
block_c[m][0] =
dot22_8_h(dq[0], a_ptr + m * a_stride, block_c[m][0], scales[0]);
block_c[m][1] =
dot22_8_h(dq[1], a_ptr + m * a_stride, block_c[m][1], scales[1]);
block_c[m][2] =
dot22_8_h(dq[2], a_ptr + m * a_stride, block_c[m][2], scales[2]);
block_c[m][3] =
dot22_8_h(dq[3], a_ptr + m * a_stride, block_c[m][3], scales[3]);
}
a_ptr += 8;
}
k += 32;
}
for (int m = 0; m < m_count; m++) {
half2* out = (half2*)c_.item_ptr(offset_m + m, n);
half2 result01 = __halves2half2(block_c[m][0], block_c[m][1]);
half2 result23 = __halves2half2(block_c[m][2], block_c[m][3]);
atomicAdd(out, result01);
atomicAdd(out + 1, result23);
}
}
fp_gemm_half_q_half_gptq_kernel pick_gemm_half_q_half_gptq_kernel(
bool first_block, const int m_count, const int bit) {
#define SELECT_KERNEL(M_COUNT) \
if (m_count == M_COUNT) { \
if (bit == 2) return gemm_half_q_half_gptq_2bit_kernel<true, M_COUNT>; \
if (bit == 3) return gemm_half_q_half_gptq_3bit_kernel<true, M_COUNT>; \
if (bit == 4) return gemm_half_q_half_gptq_4bit_kernel<true, M_COUNT>; \
if (bit == 8) return gemm_half_q_half_gptq_8bit_kernel<true, M_COUNT>; \
}
#if BLOCK_M_SIZE_MAX >= 1
SELECT_KERNEL(1);
#endif
#if BLOCK_M_SIZE_MAX >= 2
SELECT_KERNEL(2);
#endif
#if BLOCK_M_SIZE_MAX >= 3
SELECT_KERNEL(3);
#endif
#if BLOCK_M_SIZE_MAX >= 4
SELECT_KERNEL(4);
#endif
#if BLOCK_M_SIZE_MAX >= 5
SELECT_KERNEL(5);
#endif
#if BLOCK_M_SIZE_MAX >= 6
SELECT_KERNEL(6);
#endif
#if BLOCK_M_SIZE_MAX >= 7
SELECT_KERNEL(7);
#endif
#if BLOCK_M_SIZE_MAX >= 8
SELECT_KERNEL(8);
#endif
return NULL;
}
void gemm_half_q_half_cuda_part(const half* a, const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_q_perm,
half* c, int size_m, int size_n, int size_k,
int m_count, int groups, int bit) {
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
blockDim.z = 1;
gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE * 4);
gridDim.y = DIVIDE(size_m, m_count);
gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);
fp_gemm_half_q_half_gptq_kernel kernel =
pick_gemm_half_q_half_gptq_kernel(true, m_count, bit);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
kernel<<<gridDim, blockDim, 0, stream>>>(a, b_q_weight, b_gptq_qzeros,
b_gptq_scales, c, size_m, size_n,
size_k, groups, b_q_perm);
}
__global__ void reconstruct_exllama_8bit_kernel(
const uint32_t* __restrict__ b_q_weight, const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, const int size_k, const int size_n,
const int groups, half* __restrict__ b) {
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q8_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int offset_k = BLOCK_KN_SIZE * blockIdx.y;
int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
// Preload remapping table
__shared__ int perm[BLOCK_KN_SIZE];
int t = threadIdx.x;
if (b_q_perm) {
if (offset_k + t < size_k) perm[t] = b_q_perm[offset_k + t];
}
// Column
int n = offset_n + t * 4;
if (n >= size_n) return;
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// b offset
int qk = offset_k / (32 / 8);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
// Initial zeros/scale
int zeros[4];
half2 scales[4];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
__syncthreads();
int k = offset_k;
int lk = 0;
while (k < end_k) {
if (k == nextgroup) {
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
}
for (int p = 0; p < 4; p++) {
int4 load_int4[2];
load_int4[0] = *((int4*)b_ptr);
b_ptr += size_n;
load_int4[1] = *((int4*)b_ptr);
b_ptr += size_n;
half2 dq[4][4];
dequant_8bit_8(load_int4[0].x, load_int4[1].x, dq[0], size_n,
zeros[0] + 1);
dequant_8bit_8(load_int4[0].y, load_int4[1].y, dq[1], size_n,
zeros[1] + 1);
dequant_8bit_8(load_int4[0].z, load_int4[1].z, dq[2], size_n,
zeros[2] + 1);
dequant_8bit_8(load_int4[0].w, load_int4[1].w, dq[3], size_n,
zeros[3] + 1);
// half* dqh = (half*)dq;
if (b_q_perm) {
for (int j = 0; j < 4; j++) {
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]),
__low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]),
__high2half(dq[2][j]), __high2half(dq[3][j]));
}
} else {
for (int j = 0; j < 4; j++) {
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(offset_k + lk++, n, __low2half(dq[0][j]),
__low2half(dq[1][j]), __low2half(dq[2][j]),
__low2half(dq[3][j]));
b_.set4(offset_k + lk++, n, __high2half(dq[0][j]),
__high2half(dq[1][j]), __high2half(dq[2][j]),
__high2half(dq[3][j]));
}
}
}
k += 32;
}
}
__global__ void reconstruct_exllama_4bit_kernel(
const uint32_t* __restrict__ b_q_weight, const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, const int size_k, const int size_n,
const int groups, half* __restrict__ b) {
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int offset_k = BLOCK_KN_SIZE * blockIdx.y;
int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
// Preload remapping table
__shared__ int perm[BLOCK_KN_SIZE];
int t = threadIdx.x;
if (b_q_perm) {
if (offset_k + t < size_k) perm[t] = b_q_perm[offset_k + t];
}
// Column
int n = offset_n + t * 4;
if (n >= size_n) return;
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// b offset
int qk = offset_k / (32 / 4);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
// Initial zeros/scale
int zeros[4];
half2 scales[4];
half2 z1z16[4][2];
half2 y1y16[4][2];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
__syncthreads();
int k = offset_k;
int lk = 0;
while (k < end_k) {
if (k == nextgroup) {
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
}
for (int p = 0; p < 4; p++) {
half2 dq[4][4];
const int4* b_ptr4 = (int4*)b_ptr;
int4 load_int4 = *b_ptr4;
dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n,
false);
dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n,
false);
dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n,
false);
dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n,
false);
b_ptr += size_n;
// half* dqh = (half*)dq;
if (b_q_perm) {
for (int j = 0; j < 4; j++) {
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]),
__low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]),
__high2half(dq[2][j]), __high2half(dq[3][j]));
}
} else {
for (int j = 0; j < 4; j++) {
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(offset_k + lk++, n, __low2half(dq[0][j]),
__low2half(dq[1][j]), __low2half(dq[2][j]),
__low2half(dq[3][j]));
b_.set4(offset_k + lk++, n, __high2half(dq[0][j]),
__high2half(dq[1][j]), __high2half(dq[2][j]),
__high2half(dq[3][j]));
}
}
}
k += 32;
}
}
__global__ void reconstruct_exllama_3bit_kernel(
const uint32_t* __restrict__ b_q_weight, const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, const int size_k, const int size_n,
const int groups, half* __restrict__ b) {
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q3_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int offset_k = BLOCK_KN_SIZE * blockIdx.y;
int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
// Preload remapping table
__shared__ int perm[BLOCK_KN_SIZE];
int t = threadIdx.x;
if (b_q_perm) {
if (offset_k + t < size_k) perm[t] = b_q_perm[offset_k + t];
}
// Column
int n = offset_n + t * 4;
if (n >= size_n) return;
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// b offset
int qk = offset_k / 32 * 3;
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
// Initial zeros/scale
int zeros[4];
half2 scales[4];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
__syncthreads();
int k = offset_k;
int lk = 0;
while (k < end_k) {
if (k == nextgroup) {
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
}
for (int p = 0; p < 1; p++) {
int4 load_int4[3];
load_int4[0] = *((int4*)b_ptr);
b_ptr += size_n;
load_int4[1] = *((int4*)b_ptr);
b_ptr += size_n;
load_int4[2] = *((int4*)b_ptr);
b_ptr += size_n;
half2 dq[4][16];
dequant_3bit_32(load_int4[0].x, load_int4[1].x, load_int4[2].x, dq[0],
size_n, zeros[0] + 1);
dequant_3bit_32(load_int4[0].y, load_int4[1].y, load_int4[2].y, dq[1],
size_n, zeros[1] + 1);
dequant_3bit_32(load_int4[0].z, load_int4[1].z, load_int4[2].z, dq[2],
size_n, zeros[2] + 1);
dequant_3bit_32(load_int4[0].w, load_int4[1].w, load_int4[2].w, dq[3],
size_n, zeros[3] + 1);
if (b_q_perm) {
for (int j = 0; j < 16; j++) {
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]),
__low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]),
__high2half(dq[2][j]), __high2half(dq[3][j]));
}
} else {
for (int j = 0; j < 16; j++) {
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(offset_k + lk++, n, __low2half(dq[0][j]),
__low2half(dq[1][j]), __low2half(dq[2][j]),
__low2half(dq[3][j]));
b_.set4(offset_k + lk++, n, __high2half(dq[0][j]),
__high2half(dq[1][j]), __high2half(dq[2][j]),
__high2half(dq[3][j]));
}
}
}
k += 32;
}
}
__global__ void reconstruct_exllama_2bit_kernel(
const uint32_t* __restrict__ b_q_weight, const int* __restrict__ b_q_perm,
const uint32_t* __restrict__ b_gptq_qzeros,
const half* __restrict__ b_gptq_scales, const int size_k, const int size_n,
const int groups, half* __restrict__ b) {
MatrixView_half_rw b_(b, size_k, size_n);
MatrixView_q2_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);
int offset_k = BLOCK_KN_SIZE * blockIdx.y;
int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;
int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);
// Preload remapping table
__shared__ int perm[BLOCK_KN_SIZE];
int t = threadIdx.x;
if (b_q_perm) {
if (offset_k + t < size_k) perm[t] = b_q_perm[offset_k + t];
}
// Column
int n = offset_n + t * 4;
if (n >= size_n) return;
// Find initial group
int groupsize = size_k / groups;
int group = offset_k / groupsize;
int nextgroup = offset_k + groupsize;
// b offset
int qk = offset_k / (32 / 2);
const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
// Initial zeros/scale
int zeros[4];
half2 scales[4];
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
__syncthreads();
int k = offset_k;
int lk = 0;
while (k < end_k) {
if (k == nextgroup) {
group++;
nextgroup += groupsize;
b_gptq_qzeros_.item4(zeros, group, n);
b_gptq_scales_.item4_h2(scales, group, n);
}
for (int p = 0; p < 2; p++) {
const int4* b_ptr4 = (int4*)b_ptr;
int4 load_int4 = *b_ptr4;
half2 dq[4][8];
dequant_2bit_16(load_int4.x, dq[0], size_n, zeros[0] + 1);
dequant_2bit_16(load_int4.y, dq[1], size_n, zeros[1] + 1);
dequant_2bit_16(load_int4.z, dq[2], size_n, zeros[2] + 1);
dequant_2bit_16(load_int4.w, dq[3], size_n, zeros[3] + 1);
b_ptr += size_n;
// half* dqh = (half*)dq;
if (b_q_perm) {
for (int j = 0; j < 8; j++) {
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]),
__low2half(dq[2][j]), __low2half(dq[3][j]));
b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]),
__high2half(dq[2][j]), __high2half(dq[3][j]));
}
} else {
for (int j = 0; j < 8; j++) {
for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
b_.set4(offset_k + lk++, n, __low2half(dq[0][j]),
__low2half(dq[1][j]), __low2half(dq[2][j]),
__low2half(dq[3][j]));
b_.set4(offset_k + lk++, n, __high2half(dq[0][j]),
__high2half(dq[1][j]), __high2half(dq[2][j]),
__high2half(dq[3][j]));
}
}
}
k += 32;
}
}
void reconstruct_exllama(const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_q_perm,
half* out, int height, int width, int groups,
int bit) {
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
gridDim.y = DIVIDE(height, BLOCK_KN_SIZE);
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
auto reconstruct_exllama_kernel = reconstruct_exllama_4bit_kernel;
if (bit == 2) {
reconstruct_exllama_kernel = reconstruct_exllama_2bit_kernel;
} else if (bit == 3) {
reconstruct_exllama_kernel = reconstruct_exllama_3bit_kernel;
} else if (bit == 8) {
reconstruct_exllama_kernel = reconstruct_exllama_8bit_kernel;
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
reconstruct_exllama_kernel<<<gridDim, blockDim, 0, stream>>>(
b_q_weight, b_q_perm, b_gptq_qzeros, b_gptq_scales, height, width, groups,
out);
}
__global__ void gemm_half_q_half_alt_4bit_kernel(
const half2* __restrict__ vec, const uint32_t* __restrict__ mat,
half* __restrict__ mul, const half* __restrict__ scales,
const uint32_t* __restrict__ zeros, const int* __restrict__ g_idx,
int batch, int height, int width) {
int zero_width = width / 8;
int vec_height = height * 4;
const int blockwidth2 = BLOCK_KN_SIZE / 2;
int b = blockIdx.y * BLOCK_M_SIZE_MAX;
int b_end = min(BLOCK_M_SIZE_MAX, batch - b);
int h = BLOCK_KN_SIZE * blockIdx.z / 8;
int h_end = min(BLOCK_KN_SIZE / 8, height - h) * 4;
int w = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
__shared__ half2 blockvec[BLOCK_M_SIZE_MAX][blockwidth2];
if (threadIdx.x < h_end) {
for (int m = 0; m < b_end; ++m) {
blockvec[m][threadIdx.x] =
vec[(m + b) * vec_height + blockIdx.z * BLOCK_KN_SIZE / 2 +
threadIdx.x];
}
}
__shared__ half2 deq2[256][8];
int val = threadIdx.x / 8;
int off = threadIdx.x % 8;
for (; val < 256; val += BLOCK_KN_SIZE / 8) {
deq2[val][off] =
__halves2half2(__int2half_rn(val & 0xF), __int2half_rn(val >> 4));
}
if (blockIdx.z == 0) {
for (int m = 0; m < b_end; m++) mul[(b + m) * width + w] = __int2half_rn(0);
}
__syncthreads();
int i = width * h + w;
int g_h = h * 8;
int k = 0;
int z_w = w / 8;
int z_mod = (w % 8) * 4;
half2 res2;
half res[BLOCK_M_SIZE_MAX] = {};
unsigned int tmp;
while (k < h_end) {
tmp = mat[i];
half2 scales_tmp[4];
half2 zeros_tmp[4];
for (int tmp_k = 0; tmp_k < 4; tmp_k++) {
int g = g_idx[g_h + (k + tmp_k) * 2];
int g2 = g_idx[g_h + (k + tmp_k) * 2 + 1];
half scale_f = scales[g * width + w];
half scale_f2 = scales[g2 * width + w];
half2 scale = __halves2half2(scale_f, scale_f2);
half2 zero = __halves2half2(
__hmul(scale_f,
__int2half_rn(-((zeros[g * zero_width + z_w] >> z_mod) & 0xF) -
1)),
__hmul(scale_f2,
__int2half_rn(
-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xF) - 1)));
scales_tmp[tmp_k] = scale;
zeros_tmp[tmp_k] = zero;
}
for (int m = 0; m < b_end; m++) {
#ifndef USE_ROCM
res2 = {};
#else
res2.x = __half_as_ushort(__float2half(0));
res2.y = __half_as_ushort(__float2half(0));
#endif
res2 = __hfma2(
__hfma2(deq2[(tmp >> 0) & 0xff][off], scales_tmp[0], zeros_tmp[0]),
blockvec[m][k + 0], res2);
res2 = __hfma2(
__hfma2(deq2[(tmp >> 8) & 0xff][off], scales_tmp[1], zeros_tmp[1]),
blockvec[m][k + 1], res2);
res2 = __hfma2(
__hfma2(deq2[(tmp >> 16) & 0xff][off], scales_tmp[2], zeros_tmp[2]),
blockvec[m][k + 2], res2);
res2 = __hfma2(
__hfma2(deq2[(tmp >> 24) & 0xff][off], scales_tmp[3], zeros_tmp[3]),
blockvec[m][k + 3], res2);
#ifndef USE_ROCM
res[m] = __hadd(res[m], __hadd(res2.x, res2.y));
#else
res[m] = __hadd(
res[m], __hadd(__ushort_as_half(res2.x), __ushort_as_half(res2.y)));
#endif
}
i += width;
k += 4;
}
for (int m = 0; m < b_end; m++) {
atomicAdd(&mul[(b + m) * width + w], res[m]);
}
}
__global__ void gemm_half_q_half_alt_8bit_kernel(
const half2* __restrict__ vec, const uint32_t* __restrict__ mat,
half* __restrict__ mul, const half* __restrict__ scales,
const uint32_t* __restrict__ zeros, const int* __restrict__ g_idx,
int batch, int height, int width) {
int zero_width = width / 4;
int vec_height = height * 2;
const int blockwidth2 = BLOCK_KN_SIZE / 2;
int b = blockIdx.y * BLOCK_M_SIZE_MAX;
int b_end = min(BLOCK_M_SIZE_MAX, batch - b);
int h = BLOCK_KN_SIZE * blockIdx.z / 4;
int h_end = min(BLOCK_KN_SIZE / 4, height - h) * 2;
int w = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
__shared__ half2 blockvec[BLOCK_M_SIZE_MAX][blockwidth2];
if (threadIdx.x < h_end) {
for (int m = 0; m < b_end; ++m) {
blockvec[m][threadIdx.x] =
vec[(m + b) * vec_height + blockIdx.z * BLOCK_KN_SIZE / 2 +
threadIdx.x];
}
}
if (blockIdx.z == 0) {
for (int m = 0; m < b_end; m++) mul[(b + m) * width + w] = __int2half_rn(0);
}
__syncthreads();
int i = width * h + w;
int g_h = h * 4;
int k = 0;
int z_w = w / 4;
int z_mod = (w % 4) * 8;
half2 res2;
half res[BLOCK_M_SIZE_MAX] = {};
unsigned int tmp;
while (k < h_end) {
tmp = mat[i];
half2 scales_tmp[2];
half2 zeros_tmp[2];
for (int tmp_k = 0; tmp_k < 2; tmp_k++) {
int g = g_idx[g_h + (k + tmp_k) * 2];
int g2 = g_idx[g_h + (k + tmp_k) * 2 + 1];
half scale_f = scales[g * width + w];
half scale_f2 = scales[g2 * width + w];
half2 scale = __halves2half2(scale_f, scale_f2);
half2 zero = __halves2half2(
__hmul(scale_f,
__int2half_rn(
-((zeros[g * zero_width + z_w] >> z_mod) & 0xff) - 1)),
__hmul(scale_f2,
__int2half_rn(
-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xff) - 1)));
scales_tmp[tmp_k] = scale;
zeros_tmp[tmp_k] = zero;
}
for (int m = 0; m < b_end; m++) {
#ifndef USE_ROCM
res2 = {};
#else
res2.x = __half_as_ushort(__float2half(0));
res2.y = __half_as_ushort(__float2half(0));
#endif
half2 v12 = __halves2half2(__int2half_rn(tmp & 0xFF),
__int2half_rn((tmp >> 8) & 0xFF));
res2 = __hfma2(__hfma2(v12, scales_tmp[0], zeros_tmp[0]),
blockvec[m][k + 0], res2);
half2 v34 = __halves2half2(__int2half_rn((tmp >> 16) & 0xFF),
__int2half_rn((tmp >> 24) & 0xFF));
res2 = __hfma2(__hfma2(v34, scales_tmp[1], zeros_tmp[1]),
blockvec[m][k + 1], res2);
#ifndef USE_ROCM
res[m] = __hadd(res[m], __hadd(res2.x, res2.y));
#else
res[m] = __hadd(
res[m], __hadd(__ushort_as_half(res2.x), __ushort_as_half(res2.y)));
#endif
}
i += width;
k += 2;
}
for (int m = 0; m < b_end; m++) {
atomicAdd(&mul[(b + m) * width + w], res[m]);
}
}
void gemm_half_q_half_alt(const half* a, const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_g_idx,
half* c, int size_m, int size_n, int size_k,
int bit) {
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
blockDim.z = 1;
gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE);
gridDim.y = DIVIDE(size_m, BLOCK_M_SIZE_MAX);
gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);
auto kernel = gemm_half_q_half_alt_4bit_kernel;
if (bit == 8) {
kernel = gemm_half_q_half_alt_8bit_kernel;
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
kernel<<<gridDim, blockDim, 0, stream>>>(
(const half2*)a, b_q_weight, c, b_gptq_scales, b_gptq_qzeros, b_g_idx,
size_m, size_k / 32 * bit, size_n);
}
template <class T, int bit>
__global__ void reconstruct_gptq_kernel(const uint32_t* __restrict__ w,
const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros,
const int* __restrict__ g_idx,
const int height, const int width,
const int group,
half* __restrict__ out) {
// Start of block
int column = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
int row = blockIdx.y * 32 / bit;
if (column >= width) return;
// Views
MatrixView_half_rw out_(out, height, width);
MatrixView_half w_scales_(w_scales, group, width);
T w_zeros_(w_zeros, group, width);
uint32_t w_read = w[blockIdx.y * width + column];
half* out_ptr = out_.item_ptr(row, column);
#pragma unroll
for (int s = 0; s < 32; s += bit) {
int group = g_idx[row + s / bit];
half w_scale = w_scales_.item(group, column);
uint32_t w_zero = w_zeros_.item(group, column) + 1;
half w_item =
__hmul(__int2half_rn((int)((w_read >> s) & ((1 << bit) - 1)) - w_zero),
w_scale);
*out_ptr = w_item;
out_ptr += out_.width;
}
}
__global__ void reconstruct_gptq_3bit_kernel(
const uint32_t* __restrict__ w, const half* __restrict__ w_scales,
const uint32_t* __restrict__ w_zeros, const int* __restrict__ g_idx,
const int height, const int width, const int group,
half* __restrict__ out) {
// Start of block
int column = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
int row = blockIdx.y * 32;
if (column >= width) return;
// Views
MatrixView_half_rw out_(out, height, width);
MatrixView_half w_scales_(w_scales, group, width);
MatrixView_q3_row w_zeros_(w_zeros, group, width);
uint32_t w1 = w[(blockIdx.y * 3) * width + column];
uint32_t w2 = w[(blockIdx.y * 3 + 1) * width + column];
uint32_t w3 = w[(blockIdx.y * 3 + 2) * width + column];
half* out_ptr = out_.item_ptr(row, column);
#pragma unroll
for (int i = 0; i < 32; i += 1) {
int group = g_idx[row + i];
half w_scale = w_scales_.item(group, column);
uint32_t w_zero = w_zeros_.item(group, column) + 1;
int w_item;
if (i == 10) {
w_item = (w1 >> 30) | ((w2 << 2) & 0x4);
} else if (i == 21) {
w_item = (w2 >> 31) | ((w3 << 1) & 0x6);
} else if (i < 10) {
w_item = ((w1 >> (i * 3)) & 0x7);
} else if (i < 21) {
w_item = ((w2 >> (i * 3 - 32)) & 0x7);
} else {
w_item = ((w3 >> (i * 3 - 64)) & 0x7);
}
*out_ptr = __hmul(__int2half_rn(w_item - w_zero), w_scale);
out_ptr += out_.width;
}
}
void reconstruct_gptq(const uint32_t* b_q_weight, const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_g_idx, half* out,
int height, int width, int groups, int bit) {
dim3 blockDim, gridDim;
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
gridDim.y = DIVIDE(height, 32 / bit);
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
auto kernel = reconstruct_gptq_kernel<MatrixView_q4_row, 4>;
if (bit == 2) {
kernel = reconstruct_gptq_kernel<MatrixView_q2_row, 2>;
} else if (bit == 8) {
kernel = reconstruct_gptq_kernel<MatrixView_q8_row, 8>;
} else if (bit == 3) {
kernel = reconstruct_gptq_3bit_kernel;
gridDim.y = DIVIDE(height, 32);
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
kernel<<<gridDim, blockDim, 0, stream>>>(b_q_weight, b_gptq_scales,
b_gptq_qzeros, b_g_idx, height,
width, groups, out);
}
void gemm_half_q_half_cuda(cublasHandle_t cublas_handle, const half* a,
const uint32_t* b_q_weight,
const uint32_t* b_gptq_qzeros,
const half* b_gptq_scales, const int* b_g_idx,
half* c, half* temp_dq, int size_m, int size_n,
int size_k, int groups, bool use_exllama, int bit) {
bool use_reconstruct;
if (use_exllama) {
use_reconstruct = ((bit == 8 && size_m > MAX_Q_GEMM_ROWS_8BIT) ||
(bit != 8 && size_m > MAX_Q_GEMM_ROWS));
} else {
// The 2/3-bit kernels are somehow slower than dequant + gemm baseline, so
// we disabled them for now.
use_reconstruct = (bit < 4 || size_m > MAX_ALT_GEMM_ROWS);
}
if (use_reconstruct) {
// Reconstruct FP16 matrix, then cuBLAS
if (use_exllama) {
reconstruct_exllama(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
temp_dq, size_k, size_n, groups, bit);
} else {
reconstruct_gptq(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
temp_dq, size_k, size_n, groups, bit);
}
const half alpha = __float2half(1.0f);
const half beta = __float2half(0.0f);
cublasHgemm(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, size_n, size_m, size_k,
&alpha, temp_dq, size_n, a, size_k, &beta, c, size_n);
} else if (use_exllama) {
// Quantized matmul
int max_chunks = size_m / BLOCK_M_SIZE_MAX;
int last_chunk = max_chunks * BLOCK_M_SIZE_MAX;
int last_chunk_size = size_m - last_chunk;
if (max_chunks) {
gemm_half_q_half_cuda_part(a, b_q_weight, b_gptq_qzeros, b_gptq_scales,
b_g_idx, c, last_chunk, size_n, size_k,
BLOCK_M_SIZE_MAX, groups, bit);
}
if (last_chunk_size) {
gemm_half_q_half_cuda_part(a + last_chunk * size_k, b_q_weight,
b_gptq_qzeros, b_gptq_scales, b_g_idx,
c + last_chunk * size_n, last_chunk_size,
size_n, size_k, last_chunk_size, groups, bit);
}
} else {
gemm_half_q_half_alt(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
c, size_m, size_n, size_k, bit);
}
}
__global__ void shuffle_4bit_kernel(uint32_t* __restrict__ b_q_weight,
const int size_k, const int size_n) {
int n = blockIdx.x * THREADS_X + threadIdx.x;
if (n >= size_n) return;
int k = 0;
uint32_t* b_ptr = b_q_weight + n;
while (k < size_k) {
shuffle_4bit_8(b_ptr, size_n);
b_ptr += 1 * size_n;
k += 8;
}
}
__global__ void shuffle_8bit_kernel(uint32_t* __restrict__ b_q_weight,
const int size_k, const int size_n) {
int n = blockIdx.x * THREADS_X + threadIdx.x;
if (n >= size_n) return;
int k = 0;
uint32_t* b_ptr = b_q_weight + n;
while (k < size_k) {
shuffle_8bit_4(b_ptr, size_n);
b_ptr += 1 * size_n;
k += 4;
}
}
__global__ void shuffle_2bit_kernel(uint32_t* __restrict__ b_q_weight,
const int size_k, const int size_n) {
int n = blockIdx.x * THREADS_X + threadIdx.x;
if (n >= size_n) return;
int k = 0;
uint32_t* b_ptr = b_q_weight + n;
while (k < size_k) {
shuffle_2bit_16(b_ptr, size_n);
b_ptr += 1 * size_n;
k += 16;
}
}
__global__ void shuffle_3bit_kernel(uint32_t* __restrict__ b_q_weight,
const int size_k, const int size_n) {
int n = blockIdx.x * THREADS_X + threadIdx.x;
if (n >= size_n) return;
int k = 0;
uint32_t* b_ptr = b_q_weight + n;
while (k < size_k) {
shuffle_3bit_32(b_ptr, size_n);
b_ptr += 3 * size_n;
k += 32;
}
}
__global__ void make_sequential_4bit_kernel(const uint32_t* __restrict__ w,
uint32_t* __restrict__ w_new,
const int* __restrict__ q_perm,
const int w_width) {
const uint64_t* w2 = (uint64_t*)w;
uint64_t* w_new2 = (uint64_t*)w_new;
int w2_stride = w_width >> 1;
int w2_column = THREADS_X * blockIdx.x + threadIdx.x;
if (w2_column >= w2_stride) return;
int w_new2_row = blockIdx.y;
int q_perm_idx = w_new2_row << 3;
uint64_t dst = 0;
#pragma unroll
for (int i = 0; i < 8; i++) {
int source_row = q_perm[q_perm_idx++];
int w2_row = source_row >> 3;
int w2_subrow = source_row & 0x07;
int w2_row_shift = w2_subrow << 2;
int wnew2_row_shift = i << 2;
uint64_t src = w2[w2_row * w2_stride + w2_column];
src >>= w2_row_shift;
src &= 0x0000000f0000000f;
src <<= wnew2_row_shift;
dst |= src;
}
w_new2[w_new2_row * w2_stride + w2_column] = dst;
}
__global__ void make_sequential_2bit_kernel(const uint32_t* __restrict__ w,
uint32_t* __restrict__ w_new,
const int* __restrict__ q_perm,
const int w_width) {
const uint64_t* w2 = (uint64_t*)w;
uint64_t* w_new2 = (uint64_t*)w_new;
int w2_stride = w_width >> 1;
int w2_column = THREADS_X * blockIdx.x + threadIdx.x;
if (w2_column >= w2_stride) return;
int w_new2_row = blockIdx.y;
int q_perm_idx = w_new2_row << 4;
uint64_t dst = 0;
#pragma unroll
for (int i = 0; i < 16; i++) {
int source_row = q_perm[q_perm_idx++];
int w2_row = source_row >> 4;
int w2_subrow = source_row & 0x0f;
int w2_row_shift = w2_subrow << 1;
int wnew2_row_shift = i << 1;
uint64_t src = w2[w2_row * w2_stride + w2_column];
src >>= w2_row_shift;
src &= 0x0000000300000003;
src <<= wnew2_row_shift;
dst |= src;
}
w_new2[w_new2_row * w2_stride + w2_column] = dst;
}
__global__ void make_sequential_3bit_kernel(const uint32_t* __restrict__ w,
uint32_t* __restrict__ w_new,
const int* __restrict__ q_perm,
const int w_width) {
int w_column = THREADS_X * blockIdx.x + threadIdx.x;
if (w_column >= w_width) return;
int w_new_row = blockIdx.y * 3;
int q_perm_idx = blockIdx.y << 5;
uint32_t dst[3] = {0, 0, 0};
#pragma unroll
for (int i = 0; i < 32; i++) {
int source_row = q_perm[q_perm_idx++];
int z_w = (source_row / 32) * 3;
int z_mod = source_row % 32;
int z_bit;
if (z_mod != 10) {
if (z_mod != 21) {
z_bit = z_mod;
if (z_bit > 21) {
z_bit *= 3;
z_bit -= 64;
z_w += 2;
} else if (z_bit > 10) {
z_bit *= 3;
z_bit -= 32;
z_w += 1;
} else {
z_bit *= 3;
}
} else {
z_w += 1;
}
}
uint64_t src;
if (z_mod == 10) {
src = (w[z_w * w_width + w_column] >> 30) |
((w[(z_w + 1) * w_width + w_column] << 2) & 0x4);
} else if (z_mod == 21) {
src = (w[z_w * w_width + w_column] >> 31) |
((w[(z_w + 1) * w_width + w_column] << 1) & 0x6);
} else {
src = w[z_w * w_width + w_column];
src >>= z_bit;
src &= 0x07;
}
z_w = 0;
if (i != 10) {
if (i != 21) {
z_bit = i;
if (z_bit > 21) {
z_bit *= 3;
z_bit -= 64;
z_w += 2;
} else if (z_bit > 10) {
z_bit *= 3;
z_bit -= 32;
z_w += 1;
} else {
z_bit *= 3;
}
} else {
z_w += 1;
}
}
if (i == 10) {
dst[z_w] |= (src & 0x03) << 30;
dst[z_w + 1] |= ((src & 0x4) >> 2);
} else if (i == 21) {
dst[z_w] |= (src & 0x01) << 31;
dst[z_w + 1] |= ((src & 0x6) >> 1);
} else {
dst[z_w] |= (src << z_bit);
}
}
w_new[w_new_row * w_width + w_column] = dst[0];
w_new[(w_new_row + 1) * w_width + w_column] = dst[1];
w_new[(w_new_row + 2) * w_width + w_column] = dst[2];
}
__global__ void make_sequential_8bit_kernel(const uint32_t* __restrict__ w,
uint32_t* __restrict__ w_new,
const int* __restrict__ q_perm,
const int w_width) {
const uint64_t* w2 = (uint64_t*)w;
uint64_t* w_new2 = (uint64_t*)w_new;
int w2_stride = w_width >> 1;
int w2_column = THREADS_X * blockIdx.x + threadIdx.x;
if (w2_column >= w2_stride) return;
int w_new2_row = blockIdx.y;
int q_perm_idx = w_new2_row << 2;
uint64_t dst = 0;
#pragma unroll
for (int i = 0; i < 4; i++) {
int source_row = q_perm[q_perm_idx++];
int w2_row = source_row >> 2;
int w2_subrow = source_row & 0x03;
int w2_row_shift = w2_subrow << 3;
int wnew2_row_shift = i << 3;
uint64_t src = w2[w2_row * w2_stride + w2_column];
src >>= w2_row_shift;
src &= 0x000000ff000000ff;
src <<= wnew2_row_shift;
dst |= src;
}
w_new2[w_new2_row * w2_stride + w2_column] = dst;
}
void shuffle_exllama_weight(uint32_t* q_weight, int* q_perm, int height,
int width, int bit) {
if (q_perm) {
uint32_t* new_qweight = NULL;
cudaMalloc(&new_qweight, height / 32 * bit * width * sizeof(uint32_t));
dim3 blockDim, gridDim;
blockDim.x = THREADS_X;
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = height / 32 * bit;
auto kernel = make_sequential_4bit_kernel;
if (bit == 2) {
kernel = make_sequential_2bit_kernel;
} else if (bit == 3) {
kernel = make_sequential_3bit_kernel;
gridDim.y = height / 32;
} else if (bit == 8) {
kernel = make_sequential_8bit_kernel;
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
kernel<<<gridDim, blockDim, 0, stream>>>(q_weight, new_qweight, q_perm,
width);
// Replace qweights
cudaMemcpyAsync(q_weight, new_qweight,
height / 32 * bit * width * sizeof(uint32_t),
cudaMemcpyDeviceToDevice);
// Cleanup
cudaDeviceSynchronize();
cudaFree(new_qweight);
}
dim3 blockDim, gridDim;
blockDim.x = THREADS_X;
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = 1;
auto shuffle_kernel = shuffle_4bit_kernel;
if (bit == 2) {
shuffle_kernel = shuffle_2bit_kernel;
} else if (bit == 3) {
shuffle_kernel = shuffle_3bit_kernel;
} else if (bit == 8) {
shuffle_kernel = shuffle_8bit_kernel;
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
shuffle_kernel<<<gridDim, blockDim, 0, stream>>>(q_weight, height, width);
}
} // namespace gptq
} // namespace vllm
torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
torch::Tensor b_gptq_qzeros,
torch::Tensor b_gptq_scales, torch::Tensor b_g_idx,
bool use_exllama, int64_t bit) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
at::Tensor c = torch::empty({a.size(0), b_q_weight.size(1)}, options);
at::Tensor temp_dq = torch::empty(
{b_q_weight.size(0) * 32 / bit, b_q_weight.size(1)}, options);
vllm::gptq::gemm_half_q_half_cuda(
at::cuda::getCurrentCUDABlasHandle(), (const half*)a.data_ptr(),
(const uint32_t*)b_q_weight.data_ptr(),
(const uint32_t*)b_gptq_qzeros.data_ptr(),
(const half*)b_gptq_scales.data_ptr(),
b_g_idx.device().is_meta() ? NULL : (const int*)b_g_idx.data_ptr(),
(half*)c.data_ptr(), (half*)temp_dq.data_ptr(),
c.size(0), // m
c.size(1), // n
a.size(1), // k
b_gptq_qzeros.size(0), // group number
use_exllama, bit);
return c;
}
void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(q_weight));
vllm::gptq::shuffle_exllama_weight(
(uint32_t*)q_weight.data_ptr(),
q_perm.device().is_meta() || q_perm.numel() == 0
? NULL
: (int*)q_perm.data_ptr(),
q_weight.size(0) * 32 / bit, q_weight.size(1), bit);
}