vllm/csrc/pos_encoding_kernels.cu

84 lines
3.2 KiB
Plaintext

#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
namespace cacheflow {
template<typename scalar_t>
__global__ void rotary_embedding_neox_kernel(
scalar_t* __restrict__ out_query, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ out_key, // [num_tokens, num_heads, head_size]
const int64_t* __restrict__ positions, // [num_tokens]
const scalar_t* __restrict__ query, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ cos_sin_cache, // [max_position, 2, head_size // 2]
const int num_heads,
const int head_size) {
// Each thread block is responsible for one token.
const int token_idx = blockIdx.x;
int64_t pos = positions[token_idx];
const scalar_t* cache_ptr = cos_sin_cache + pos * head_size;
const int embed_dim = head_size / 2;
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int idx = token_idx * n + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int token_head = token_idx * n + head_idx * head_size;
const bool is_first_half = head_offset < embed_dim;
const int rot_offset = head_offset % embed_dim;
const int x_index = rot_offset;
const int y_index = embed_dim + rot_offset;
const scalar_t cos = __ldg(cache_ptr + x_index);
const scalar_t sin = __ldg(cache_ptr + y_index);
const scalar_t q_x = __ldg(query + token_head + x_index);
const scalar_t q_y = __ldg(query + token_head + y_index);
const scalar_t q_cos = is_first_half ? q_x : q_y;
const scalar_t q_sin = is_first_half ? -q_y : q_x;
out_query[idx] = q_cos * cos + q_sin * sin;
const scalar_t k_x = __ldg(key + token_head + x_index);
const scalar_t k_y = __ldg(key + token_head + y_index);
const scalar_t k_cos = is_first_half ? k_x : k_y;
const scalar_t k_sin = is_first_half ? -k_y : k_x;
out_key[idx] = k_cos * cos + k_sin * sin;
}
}
} // namespace cacheflow
void rotary_embedding_neox(
torch::Tensor& out_query, // [num_tokens, num_heads * head_size]
torch::Tensor& out_key, // [num_tokens, num_heads * head_size]
torch::Tensor& positions, // [num_tokens]
torch::Tensor& query, // [num_tokens, num_heads * head_size]
torch::Tensor& key, // [num_tokens, num_heads * head_size]
torch::Tensor& cos_sin_cache) // [max_position, head_size]
{
int num_tokens = query.size(0);
int head_size = cos_sin_cache.size(1);
int num_heads = query.size(1) / head_size;
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
query.scalar_type(),
"rotary_embedding_neox",
[&] {
cacheflow::rotary_embedding_neox_kernel<scalar_t><<<grid, block, 0, stream>>>(
out_query.data_ptr<scalar_t>(),
out_key.data_ptr<scalar_t>(),
positions.data_ptr<int64_t>(),
query.data_ptr<scalar_t>(),
key.data_ptr<scalar_t>(),
cos_sin_cache.data_ptr<scalar_t>(),
num_heads,
head_size);
});
}