Lucas Wilkinson 86e9c8df29
[Kernel] (2/N) Machete - Integrate into CompressedTensorsWNA16 and GPTQMarlin (#7701)
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: Divakar Verma <137818590+divakar-amd@users.noreply.github.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2024-09-23 13:46:26 -04:00

84 lines
2.6 KiB
Python

from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Callable, Optional, Tuple
import torch
from vllm.model_executor.layers.quantization.utils import replace_parameter
from vllm.scalar_type import ScalarType
@dataclass
class MPLinearLayerConfig:
full_weight_shape: Tuple[int, int] # [in, out]
partition_weight_shape: Tuple[int, int]
weight_type: ScalarType
act_type: torch.dtype
group_size: int
zero_points: bool
has_g_idx: bool
class MPLinearKernel(ABC):
@classmethod
@abstractmethod
def get_min_capability(cls) -> int:
raise NotImplementedError
@classmethod
@abstractmethod
def can_implement(cls,
c: MPLinearLayerConfig) -> Tuple[bool, Optional[str]]:
raise NotImplementedError
def __init__(self,
c: MPLinearLayerConfig,
w_q_param_name: str,
w_s_param_name: str,
w_zp_param_name: Optional[str] = None,
w_gidx_param_name: Optional[str] = None) -> None:
assert self.can_implement(c)
self.config = c
self.w_q_name = w_q_param_name
self.w_s_name = w_s_param_name
self.w_zp_name = w_zp_param_name
self.w_gidx_name = w_gidx_param_name
@abstractmethod
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
raise NotImplementedError
@abstractmethod
def apply_weights(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
raise NotImplementedError
def _transform_param(self, layer: torch.nn.Module, name: Optional[str],
fn: Callable) -> None:
if name is not None and getattr(layer, name, None) is not None:
old_param = getattr(layer, name)
new_param = fn(old_param)
# replace the parameter with torch.nn.Parameter for TorchDynamo
# compatibility
replace_parameter(
layer, name,
torch.nn.Parameter(new_param.data, requires_grad=False))
def _get_weight_params(
self, layer: torch.nn.Module
) -> Tuple[torch.Tensor, # w_q
torch.Tensor, # w_s
Optional[torch.Tensor], # w_zp,
Optional[torch.Tensor] # w_gidx
]:
return (
getattr(layer, self.w_q_name),
getattr(layer, self.w_s_name),
getattr(layer, self.w_zp_name or "", None),
getattr(layer, self.w_gidx_name or "", None),
)