vllm/tests/spec_decode/test_batch_expansion.py

96 lines
3.0 KiB
Python

import torch
import pytest
from vllm.spec_decode.batch_expansion import BatchExpansionTop1Scorer
from .utils import mock_worker, create_seq_group_metadata_from_prompts
@pytest.mark.parametrize('num_target_seq_ids', [100])
def test_create_target_seq_id_iterator(num_target_seq_ids: int):
"""Verify all new sequence ids are greater than all input
seq ids.
"""
scorer = BatchExpansionTop1Scorer(mock_worker(), 'cuda:0', 32_000)
all_seq_ids = [
[1, 3, 5, 7],
list(range(100)) + [0],
[100],
]
for seq_ids in all_seq_ids:
max_seq_id = max(seq_ids)
iterator = scorer._create_target_seq_id_iterator(seq_ids) # pylint: disable=protected-access
for _ in range(num_target_seq_ids):
assert next(iterator) > max_seq_id
@pytest.mark.parametrize('k', [1, 2, 6])
def test_get_token_ids_to_score(k: int):
"""Verify correct tokens are selected for scoring.
"""
proposal_token_ids = torch.tensor(
list(range(k)),
dtype=torch.int64,
device='cuda',
)
expected_output = [
[],
]
for i in range(proposal_token_ids.shape[0]):
expected_output.append(proposal_token_ids[:i + 1].tolist())
scorer = BatchExpansionTop1Scorer(mock_worker(), 'cuda:0', 32_000)
actual_output = scorer._get_token_ids_to_score(proposal_token_ids) # pylint: disable=protected-access
actual_output = [
x.tolist() if isinstance(x, torch.Tensor) else x for x in actual_output
]
assert actual_output == expected_output
@pytest.mark.parametrize('k', [1, 2, 6])
def test_create_single_target_seq_group_metadata(k: int):
"""Verify correct creation of a batch-expanded seq group metadata.
"""
prompt_tokens = [1, 2, 3]
prev_output_tokens = [4, 5, 6]
token_ids = list(range(k))
num_tokens_processed = len(prompt_tokens) + len(prev_output_tokens) - 1
final_seq_len = len(prompt_tokens) + len(prev_output_tokens) + len(
token_ids)
block_size = 32
input_seq_group_metadata = create_seq_group_metadata_from_prompts(
[prompt_tokens], 2048 // block_size, block_size, [final_seq_len],
[prev_output_tokens], [num_tokens_processed])[0]
input_seq_id = list(input_seq_group_metadata.seq_data.keys())[0]
target_seq_id = 100
scorer = BatchExpansionTop1Scorer(mock_worker(), 'cuda:0', 32_000)
output = scorer._create_single_target_seq_group_metadata( # pylint: disable=protected-access
input_seq_group_metadata,
input_seq_id,
target_seq_id,
token_ids,
)
assert output.request_id == input_seq_group_metadata.request_id
assert len(output.seq_data) == 1
assert output.seq_data[target_seq_id].get_prompt_token_ids(
) == prompt_tokens
assert output.seq_data[target_seq_id].get_output_token_ids(
) == prev_output_tokens + token_ids
assert len(output.block_tables) == 1
assert output.block_tables[
target_seq_id] == input_seq_group_metadata.block_tables[input_seq_id]