672 lines
27 KiB
Python
672 lines
27 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Adapted from https://github.com/fixie-ai/ultravox/blob/ecd58c4041030bae2ad15aa6bcf04ab43199ea02/ultravox/model/ultravox_model.py
|
|
"""PyTorch Ultravox model."""
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from functools import cached_property
|
|
from typing import Any, Literal, Optional, Set, Tuple, TypedDict, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from transformers import BatchFeature, ProcessorMixin
|
|
from transformers.models.whisper import WhisperFeatureExtractor
|
|
from transformers.models.whisper.modeling_whisper import WhisperEncoder
|
|
|
|
from vllm import envs
|
|
from vllm.config import VllmConfig
|
|
from vllm.forward_context import get_forward_context
|
|
from vllm.model_executor.layers.activation import MulAndSilu, get_act_fn
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.model_loader.loader import DefaultModelLoader
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
|
|
NestedTensors)
|
|
from vllm.multimodal.parse import MultiModalDataItems, MultiModalDataParser
|
|
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
|
BaseProcessingInfo, PromptReplacement,
|
|
PromptUpdate)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs.ultravox import UltravoxConfig
|
|
|
|
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
|
|
SupportsMultiModal, SupportsPP)
|
|
from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
|
|
init_vllm_registered_model, maybe_prefix,
|
|
merge_multimodal_embeddings,
|
|
merge_multimodal_embeddings_from_map)
|
|
|
|
_AUDIO_PLACEHOLDER_OVERRIDE = "<|reserved_special_token_0|>"
|
|
_AUDIO_PLACEHOLDER_TOKEN = 128002
|
|
_AUDIO_TOKENS_PER_SECOND = 6.25
|
|
_MAX_ENCODER_BATCH_SIZE = 16
|
|
|
|
|
|
class UltravoxAudioFeatureInputs(TypedDict):
|
|
type: Literal["audio_features"]
|
|
data: Union[torch.Tensor, list[torch.Tensor], list[list[torch.Tensor]]]
|
|
"""Shape: `(batch_size, num_chunks, 80, M)`"""
|
|
lens: Union[torch.Tensor, list[torch.Tensor]]
|
|
"""
|
|
Length of the audio frames. Used for attention mask in WhisperEncoder.
|
|
Shape: `(batch_size, num_chunks)`
|
|
"""
|
|
token_len: Union[torch.Tensor, list[torch.Tensor]]
|
|
"""
|
|
Length of the audio tokens. Used for flattening the audio features.
|
|
Shape: `(batch_size, num_chunks)`
|
|
"""
|
|
|
|
|
|
class UltravoxAudioEmbeddingInputs(TypedDict):
|
|
type: Literal["audio_embeds"]
|
|
data: NestedTensors
|
|
"""Shape: `(batch_size, num_audios, audio_feature_size, hidden_size)`"""
|
|
|
|
|
|
UltravoxAudioInputs = Union[UltravoxAudioFeatureInputs,
|
|
UltravoxAudioEmbeddingInputs]
|
|
|
|
|
|
class UltravoxProcessingInfo(BaseProcessingInfo):
|
|
|
|
def get_hf_processor(
|
|
self,
|
|
*,
|
|
# Ignored in initialization
|
|
sampling_rate: Optional[int] = None,
|
|
**kwargs: object,
|
|
) -> ProcessorMixin:
|
|
hf_processor = self.ctx.get_hf_processor(**kwargs)
|
|
|
|
# NOTE: Ultravox processing definition uses '<|eot_id|>' as the
|
|
# placeholder that will cause confusion with the actual end of turn
|
|
# token, thus we override placeholder with a reserved special
|
|
# token.
|
|
hf_processor.audio_token_replacement = _AUDIO_PLACEHOLDER_OVERRIDE
|
|
hf_processor.audio_replacement_token_id = _AUDIO_PLACEHOLDER_TOKEN
|
|
return hf_processor
|
|
|
|
def get_feature_extractor(
|
|
self,
|
|
*,
|
|
# Ignored in initialization
|
|
sampling_rate: Optional[int] = None,
|
|
) -> WhisperFeatureExtractor:
|
|
hf_processor = self.get_hf_processor(sampling_rate=sampling_rate)
|
|
audio_processor = hf_processor.audio_processor # type: ignore
|
|
feature_extractor = audio_processor.feature_extractor # type: ignore
|
|
assert isinstance(feature_extractor, WhisperFeatureExtractor)
|
|
return feature_extractor
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"audio": None}
|
|
|
|
|
|
class UltravoxDummyInputsBuilder(BaseDummyInputsBuilder[UltravoxProcessingInfo]
|
|
):
|
|
|
|
def get_dummy_processor_inputs(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> ProcessorInputs:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
|
|
sampling_rate = feature_extractor.sampling_rate
|
|
audio_len = (feature_extractor.chunk_length * sampling_rate *
|
|
_MAX_ENCODER_BATCH_SIZE)
|
|
num_audios = mm_counts.get("audio", 0)
|
|
|
|
mm_data = {
|
|
"audio":
|
|
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
|
|
}
|
|
|
|
return ProcessorInputs(
|
|
prompt_text="<|audio|>" * num_audios,
|
|
mm_data=mm_data,
|
|
)
|
|
|
|
|
|
class UltravoxMultiModalProcessor(
|
|
BaseMultiModalProcessor[UltravoxProcessingInfo]):
|
|
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
# Text-only input not supported in composite processor
|
|
if not mm_data.get("audios", []):
|
|
prompt_ids = self.info.get_tokenizer().encode(
|
|
prompt, add_special_tokens=False)
|
|
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
|
|
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
|
|
|
|
mm_data = dict(mm_data)
|
|
audios = mm_data.pop("audios", [])
|
|
assert isinstance(audios, list)
|
|
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
mm_kwargs = dict(
|
|
**mm_kwargs,
|
|
sampling_rate=feature_extractor.sampling_rate,
|
|
include_audio_num_chunks=True,
|
|
)
|
|
|
|
item_processor_data = dict(**mm_data, audios=audios)
|
|
|
|
output = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=item_processor_data,
|
|
mm_kwargs=mm_kwargs,
|
|
)
|
|
output['audio_features'] = output.pop('audio_values')
|
|
|
|
return output
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
num_chunks = hf_inputs.get('audio_num_chunks', torch.zeros(0))
|
|
return dict(
|
|
# to handle longer than 30s audio, each audio might be split
|
|
# into multiple chunks as such, their batch dimension can be
|
|
# higher than the number of audio samples
|
|
audio_features=MultiModalFieldConfig.flat_from_sizes(
|
|
"audio", num_chunks),
|
|
audio_token_len=MultiModalFieldConfig.flat_from_sizes(
|
|
"audio", num_chunks),
|
|
audio_lens=MultiModalFieldConfig.flat_from_sizes(
|
|
"audio", num_chunks),
|
|
# num_chunks can convert audio_chunked to audio batch dimension
|
|
audio_num_chunks=MultiModalFieldConfig.batched("audio"),
|
|
audio_embeds=MultiModalFieldConfig.batched("audio"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, Any],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
|
|
replacement_id = hf_processor.audio_replacement_token_id # type: ignore
|
|
|
|
# Each audio can be split into multiple chunks.
|
|
# chunks_start_idx[i] indicates the start index of the chunks
|
|
# belonging to the i-th audio.
|
|
num_chunks = out_mm_kwargs.get("audio_num_chunks", torch.zeros(0))
|
|
chunks_start_idx: torch.Tensor = torch.cumsum(num_chunks,
|
|
dim=0,
|
|
dtype=torch.int32)
|
|
chunks_start_idx = torch.cat(
|
|
[torch.tensor([0], dtype=torch.int32), chunks_start_idx])
|
|
|
|
def get_replacement_ultravox(item_idx: int):
|
|
start = chunks_start_idx[item_idx]
|
|
end = chunks_start_idx[item_idx + 1]
|
|
audio_token_len = out_mm_kwargs["audio_token_len"][start:end].sum()
|
|
return [replacement_id] * int(audio_token_len) # type: ignore
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="audio",
|
|
target="<|audio|>",
|
|
replacement=get_replacement_ultravox,
|
|
)
|
|
]
|
|
|
|
|
|
class StackAudioFrames(nn.Module):
|
|
"""
|
|
Stack the audio embedding frames to reduce the sequence length by a factor
|
|
of `stack_factor`.
|
|
"""
|
|
|
|
def __init__(self, stack_factor: int = 8):
|
|
super().__init__()
|
|
self.stack_factor = stack_factor
|
|
|
|
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
|
|
B, T, C = audio_embeds.shape
|
|
T_pad = (T + self.stack_factor -
|
|
1) // self.stack_factor * self.stack_factor
|
|
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T))
|
|
B, T, C = audio_embeds.shape
|
|
audio_embeds = audio_embeds.view(B, T // self.stack_factor,
|
|
C * self.stack_factor)
|
|
return audio_embeds
|
|
|
|
|
|
class UltravoxProjector(nn.Module):
|
|
|
|
def __init__(self, config: UltravoxConfig):
|
|
super().__init__()
|
|
self.hidden_dim = config.hidden_size
|
|
self._pad_and_stack = StackAudioFrames(config.stack_factor)
|
|
dim_in = config.audio_config.hidden_size * config.stack_factor
|
|
self.ln_pre = RMSNorm(dim_in)
|
|
self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
|
|
dim_mid = self.hidden_dim
|
|
|
|
if config.projector_act == "swiglu":
|
|
self.act = MulAndSilu()
|
|
dim_mid = dim_mid // 2
|
|
else:
|
|
self.act = get_act_fn(config.projector_act)
|
|
|
|
dim_out = config.text_config.hidden_size
|
|
self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)
|
|
|
|
# Ultravox v0.4.1 and below use layer_norm after the second linear layer
|
|
# while v0.5.0 and above uses layer_norm after the first linear layer.
|
|
if config.projector_ln_mid:
|
|
self.ln_mid: nn.Module = RMSNorm(dim_mid)
|
|
self.ln_post = nn.Identity()
|
|
else:
|
|
self.ln_mid = nn.Identity()
|
|
self.ln_post = RMSNorm(dim_out)
|
|
|
|
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
|
audio_features = self._pad_and_stack(audio_features)
|
|
audio_features = self.ln_pre(audio_features)
|
|
hidden_states = self.linear_1(audio_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.ln_mid(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
hidden_states = self.ln_post(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class ModifiedWhisperEncoder(WhisperEncoder):
|
|
"""
|
|
Encoder portion of OpenAI's Whisper model.
|
|
|
|
This implementation is a slightly modified version of HF Transformers'
|
|
Whisper Encoder, with only a few fixes:
|
|
1. base_model_prefix updated to allow for doing `.from_pretrained`
|
|
directly on the encoder
|
|
2. allow less than 30 second of audio padding to be passed in:
|
|
- relaxed ValueError check for `input_features` length to be less
|
|
than or equal to `expected_seq_length` instead of strictly equal
|
|
- embed_pos is now sliced to match the length of `inputs_embeds`
|
|
|
|
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
|
See commentary: https://github.com/huggingface/transformers/issues/25744
|
|
"""
|
|
|
|
base_model_prefix = "model.encoder"
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.config.is_decoder = False
|
|
|
|
@property
|
|
def max_context_length(self):
|
|
return (self.config.max_source_positions * self.conv1.stride[0] *
|
|
self.conv2.stride[0])
|
|
|
|
def get_attention_mask_by_audio_len(self,
|
|
audio_lens: Optional[torch.Tensor],
|
|
hidden_states: torch.Tensor):
|
|
"""
|
|
Create attention mask based on audio lengths to mask out padding tokens
|
|
For each sample in batch:
|
|
- Convert raw audio length to feature length after convolutions
|
|
- Create bool mask: True for valid positions and False for padding
|
|
- Convert to attention mask format expected by transformer layers
|
|
(1.0 for positions to attend to, large negative for positions to ignore)
|
|
This masking ensures consistent behavior between training and inference
|
|
by preventing the model from attending to padding tokens in both cases
|
|
"""
|
|
if audio_lens is None:
|
|
return None
|
|
|
|
audio_feature_len = self._get_feat_extract_output_lengths(audio_lens)
|
|
max_seq_len = hidden_states.shape[1]
|
|
attention_mask = torch.arange(max_seq_len,
|
|
device=hidden_states.device)[None, :].lt(
|
|
audio_feature_len.view(-1, 1))
|
|
attention_mask = self.get_extended_attention_mask(
|
|
attention_mask,
|
|
None,
|
|
dtype=hidden_states.dtype,
|
|
)
|
|
return attention_mask
|
|
|
|
def forward(
|
|
self,
|
|
input_features: torch.Tensor,
|
|
audio_lens: Optional[torch.Tensor] = None,
|
|
):
|
|
expected_seq_length = self.max_context_length
|
|
if input_features.shape[-1] > expected_seq_length:
|
|
raise ValueError(
|
|
f"Whisper expects the mel input features to be of length "
|
|
f"{expected_seq_length} or less, but found "
|
|
f"{input_features.shape[-1]}. Make sure to pad the input mel "
|
|
f"features to {expected_seq_length}.")
|
|
|
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
|
embed_pos = self.embed_positions.weight[:inputs_embeds.size(-2)]
|
|
|
|
hidden_states = inputs_embeds + embed_pos
|
|
hidden_states = nn.functional.dropout(hidden_states,
|
|
p=self.dropout,
|
|
training=self.training)
|
|
|
|
attention_mask = self.get_attention_mask_by_audio_len(
|
|
audio_lens, hidden_states)
|
|
|
|
for encoder_layer in self.layers:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
layer_head_mask=None,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
UltravoxMultiModalProcessor,
|
|
info=UltravoxProcessingInfo,
|
|
dummy_inputs=UltravoxDummyInputsBuilder)
|
|
class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
|
|
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"]
|
|
}
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={"audio_tower.model.encoder.": "audio_tower."})
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.multi_modal_config = multimodal_config
|
|
assert self.multi_modal_config
|
|
|
|
self.secondary_weights = []
|
|
self.audio_tower = ModifiedWhisperEncoder(config.audio_config)
|
|
if config.audio_model_id is not None:
|
|
# this prefix is not for initialization, but for loading weights
|
|
# note the trailing dot
|
|
self.secondary_weights.append(
|
|
DefaultModelLoader.Source(
|
|
model_or_path=config.audio_model_id,
|
|
revision=None,
|
|
prefix="audio_tower.",
|
|
))
|
|
self.multi_modal_projector = UltravoxProjector(config)
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
)
|
|
if config.text_model_id is not None:
|
|
# this prefix is not for initialization, but for loading weights
|
|
# note the trailing dot
|
|
self.secondary_weights.append(
|
|
DefaultModelLoader.Source(model_or_path=config.text_model_id,
|
|
revision=None,
|
|
prefix="language_model."))
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors)
|
|
|
|
@cached_property
|
|
def sampler(self):
|
|
if hasattr(self.language_model, "sampler"):
|
|
return self.language_model.sampler
|
|
|
|
return get_sampler()
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="language_model.",
|
|
connector="multi_modal_projector.",
|
|
tower_model="audio_tower.",
|
|
)
|
|
|
|
def _audio_features_to_embeddings(
|
|
self, input_features: torch.Tensor,
|
|
audio_lens: torch.Tensor) -> torch.Tensor:
|
|
audio_features = input_features.to(self.audio_tower.dtype)
|
|
batch_size = audio_features.size(0)
|
|
audio_embeddings = []
|
|
|
|
# Process audio features in batches to keep memory usage predictable
|
|
for start in range(0, batch_size, _MAX_ENCODER_BATCH_SIZE):
|
|
end = min(start + _MAX_ENCODER_BATCH_SIZE, batch_size)
|
|
# Process through audio tower
|
|
batch_features = self.audio_tower(audio_features[start:end],
|
|
audio_lens[start:end])
|
|
batch_features = batch_features.to(self.audio_tower.dtype)
|
|
|
|
# Process through projector
|
|
batch_embeddings = self.multi_modal_projector(batch_features)
|
|
audio_embeddings.append(batch_embeddings)
|
|
|
|
# Concatenate results
|
|
audio_embeddings = torch.cat(audio_embeddings, dim=0)
|
|
return audio_embeddings
|
|
|
|
def _parse_and_validate_audio_input(
|
|
self, **kwargs: object) -> Optional[UltravoxAudioInputs]:
|
|
audio_features = kwargs.pop("audio_features", None)
|
|
audio_embeds = kwargs.pop("audio_embeds", None)
|
|
audio_lens = kwargs.pop("audio_lens", None)
|
|
audio_token_len = kwargs.pop("audio_token_len", None)
|
|
|
|
if audio_features is None and audio_embeds is None:
|
|
return None
|
|
|
|
if audio_features is not None:
|
|
if not isinstance(audio_features, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio features. "
|
|
f"Got type: {type(audio_features)}")
|
|
if not isinstance(audio_lens, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio_lens. "
|
|
f"Got type: {type(audio_features)}")
|
|
if not isinstance(audio_token_len, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio_token_len. "
|
|
f"Got type: {type(audio_features)}")
|
|
|
|
return UltravoxAudioFeatureInputs(type="audio_features",
|
|
data=audio_features,
|
|
lens=audio_lens,
|
|
token_len=audio_token_len)
|
|
|
|
if audio_embeds is not None:
|
|
if not isinstance(audio_embeds, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of audio embeds. "
|
|
f"Got type: {type(audio_embeds)}")
|
|
|
|
return UltravoxAudioEmbeddingInputs(type="audio_embeds",
|
|
data=audio_embeds)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _process_audio_input(
|
|
self,
|
|
audio_input: UltravoxAudioInputs,
|
|
) -> Union[NestedTensors, tuple[torch.Tensor, ...]]:
|
|
if audio_input["type"] == "audio_embeds":
|
|
return audio_input["data"]
|
|
|
|
# Pad and concatenate audio features
|
|
# [[B1, 80, M1], [B2, 80, M2]] -> [B1+B2, 80, max(M1, M2)]
|
|
audio_features = pad_and_concat_to_dim3(audio_input["data"])
|
|
|
|
# [B1, B2] -> [B1+B2]
|
|
audio_lens = flatten_bn(audio_input['lens'], concat=True)
|
|
audio_token_len = flatten_bn(audio_input['token_len'], concat=True)
|
|
|
|
embeddings = self._audio_features_to_embeddings(
|
|
audio_features, audio_lens)
|
|
|
|
# We should flatten and concatenate embeddings based on token lengths
|
|
# For example, with token_len = [4, 2, 3], flattened_embeddings will be
|
|
# concat(embeddings[0][:4], embeddings[1][:2], embeddings[2][:3])
|
|
|
|
# Create a mask of valid indices based on token lengths
|
|
max_len = embeddings.shape[1]
|
|
indices = torch.arange(max_len, device=embeddings.device).expand(
|
|
embeddings.shape[0], -1)
|
|
mask = indices < audio_token_len[:, None]
|
|
# Apply mask and flatten
|
|
flattened_embeddings = embeddings[mask]
|
|
|
|
# Return one tensor per input audio
|
|
embed_lens = [
|
|
token_len_item.sum().item()
|
|
for token_len_item in audio_input['token_len']
|
|
]
|
|
return flattened_embeddings.split(embed_lens)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_multimodal_embeddings(
|
|
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
|
|
audio_input = self._parse_and_validate_audio_input(**kwargs)
|
|
if audio_input is None:
|
|
return None
|
|
audio_embeddings = self._process_audio_input(audio_input)
|
|
return audio_embeddings
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
|
if multimodal_embeddings is not None:
|
|
|
|
# TODO(ywang96): remove this block after v0 is deprecated.
|
|
if not envs.VLLM_USE_V1:
|
|
attn_metadata = get_forward_context().attn_metadata
|
|
merge_multimodal_embeddings_from_map(
|
|
inputs_embeds, multimodal_embeddings,
|
|
attn_metadata.multi_modal_placeholder_index_maps["audio"])
|
|
else:
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids, inputs_embeds, multimodal_embeddings,
|
|
_AUDIO_PLACEHOLDER_TOKEN)
|
|
return inputs_embeds
|
|
|
|
def forward(self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs) -> Union[torch.Tensor, IntermediateTensors]:
|
|
"""Run forward pass for Ultravox
|
|
|
|
One key thing to understand is the `input_ids` already accounts for the
|
|
positions of the to-be-inserted audio embeddings. The to-be-inserted
|
|
audio has a size that is essentially 6.25 tokens per second of audio.
|
|
|
|
This way, the `positions` and `attn_metadata` are consistent
|
|
with the `input_ids`.
|
|
|
|
Args:
|
|
audio_features: A batch of audio input chunks [B, N, 80, M].
|
|
audio_lens: Length of audio frames for each audio chunk [B].
|
|
audio_token_len: Length of audio tokens for each audio chunk [B'].
|
|
Note: batch dim is different from batch dim in audio chunks.
|
|
|
|
"""
|
|
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
|
# condition is for v0 compatibility.
|
|
elif inputs_embeds is None:
|
|
multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
|
|
|
|
inputs_embeds = self.get_input_embeddings(input_ids,
|
|
multimodal_embeddings)
|
|
input_ids = None
|
|
|
|
hidden_states = self.language_model.model(input_ids,
|
|
positions,
|
|
intermediate_tensors,
|
|
inputs_embeds=inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
|
return self.language_model.compute_logits(hidden_states,
|
|
sampling_metadata)
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
return self.language_model.sample(logits, sampling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
|
|
loader = AutoWeightsLoader(self,
|
|
ignore_unexpected_prefixes=["audio_tower."])
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
|
|
def pad_and_concat_to_dim3(
|
|
features: Union[torch.Tensor, list[torch.Tensor], list[list[torch.Tensor]]]
|
|
) -> torch.Tensor:
|
|
"""
|
|
Pad and concatenate a list of tensors.
|
|
|
|
output:
|
|
Tensor of shape [B, C, M] where M is the maximum length of the input
|
|
tensors, B is the sum of the batch sizes of the input tensors.
|
|
C must be the same for all input tensors.
|
|
"""
|
|
if isinstance(features, torch.Tensor):
|
|
if features.ndim > 3:
|
|
# Flatten [B, N, 80, M] -> [B * N, 80, M]
|
|
features = flatten_bn(features)
|
|
return features
|
|
|
|
features = [pad_and_concat_to_dim3(f) for f in features]
|
|
|
|
max_len = max(f.shape[-1] for f in features)
|
|
# Ensure all features have dim=3
|
|
features = [f.view(-1, *f.shape[-2:]) for f in features]
|
|
# Pad and oncatenate:
|
|
# [[B1, 80, M1], [B2, 80, M2]] -> [B1+B2, 80, max(M1, M2)]
|
|
features = [F.pad(f, (0, max_len - f.shape[-1])) for f in features]
|
|
return torch.cat(features)
|