Cyrus Leung 83b824c8b4
[VLM] Remove BaseProcessingInfo.get_mm_max_tokens_per_item (#16408)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-04-10 09:06:58 -07:00

776 lines
27 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Idefics3 model compatible with HuggingFace weights."""
import math
from collections.abc import Iterable, Mapping, Sequence
from typing import Dict, Literal, Optional, Set, Tuple, TypedDict, Union
import torch
from torch import nn
from transformers import (BatchFeature, Idefics3Config, Idefics3ImageProcessor,
Idefics3Processor)
from vllm.config import VllmConfig
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.parse import ImageProcessorItems, ImageSize
# yapf conflicts with isort for this block
# yapf: disable
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo,
MultiModalDataItems,
MultiModalFieldConfig,
PromptReplacement, PromptUpdate,
PromptUpdateDetails)
# yapf: enable
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.sequence import IntermediateTensors
# yapf: disable
from .idefics2_vision_model import (
Idefics2VisionTransformer as Idefics3VisionTransformer)
# yapf: enable
from .interfaces import MultiModalEmbeddings, SupportsLoRA, SupportsMultiModal
from .llama import LlamaModel
from .utils import (AutoWeightsLoader, flatten_bn, maybe_prefix,
merge_multimodal_embeddings)
class Idefics3ImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
pixel_values: torch.Tensor
"""
Shape: `(batch_size * num_images * num_patches,
num_channels, height, width)`
"""
pixel_attention_mask: torch.Tensor
num_patches: torch.Tensor
"""Shape: `(batch_size * num_images)`"""
class Idefics3ImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
data: torch.Tensor
"""
Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
`hidden_size` must match the hidden size of language model backbone.
"""
ImageInputs = Union[Idefics3ImagePixelInputs, Idefics3ImageEmbeddingInputs]
class Idefics3ProcessingInfo(BaseProcessingInfo):
def get_hf_processor(
self,
*,
size: Optional[Dict[str, int]] = None,
**kwargs: object,
) -> Idefics3Processor:
if size is not None:
kwargs["size"] = size
return self.ctx.get_hf_processor(Idefics3Processor, **kwargs)
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None}
def _resize_output_size(self,
*,
height: int,
width: int,
max_len: Optional[int] = None,
min_len: int = 1,
max_size: Optional[int] = None) -> tuple[int, int]:
# Set default value for max_len if not provided
max_len = max(height, width) if max_len is None else max_len
aspect_ratio = width / height
# Handle the maximum size constraint
if max_size is not None:
max_len = min(max_len, max_size)
# Adjust dimensions according to the aspect ratio
if width >= height:
width = max_len
height = int(width / aspect_ratio)
else:
height = max_len
width = int(height * aspect_ratio)
# Ensure both width and height are even (if needed)
height += height % 2
width += width % 2
# Ensure dimensions are not smaller than the minimum length
height = max(height, min_len)
width = max(width, min_len)
return height, width
def _get_resize_output_image_size(
self,
*,
image_width: int,
image_height: int,
resolution_max_side: int,
) -> tuple[int, int]:
hf_processor = self.get_hf_processor()
image_processor: Idefics3ImageProcessor = hf_processor.image_processor
max_image_size = image_processor.size['longest_edge']
if resolution_max_side > max_image_size:
raise ValueError(
"`resolution_max_side` cannot be larger than `max_image_size`")
height, width = image_height, image_width
# Find the output size, when rescaling the longest edge to max_len and
# preserving the aspect ratio
height, width = self._resize_output_size(height=height,
width=width,
max_len=resolution_max_side)
return height, width
def _get_image_feature_grid_size(
self,
*,
image_width: int,
image_height: int,
processor: Optional[Idefics3Processor],
) -> tuple[int, int]:
if processor is None:
processor = self.get_hf_processor()
image_processor: Idefics3ImageProcessor = processor.image_processor
max_image_size = image_processor.max_image_size['longest_edge']
size = image_processor.size['longest_edge']
assert size % max_image_size == 0, (
"`longest_edge` in image_processor's `size` must be divisible by "
"`longest_edge` in `max_image_size`, this may be caused by "
"incorrect mm_kwargs override.")
resized_height, resized_width = self._get_resize_output_image_size(
image_width=image_width,
image_height=image_height,
resolution_max_side=size,
)
if resized_height > max_image_size or resized_width > max_image_size:
grid_h = math.ceil(resized_height / max_image_size)
grid_w = math.ceil(resized_width / max_image_size)
else:
grid_h = grid_w = 0
return grid_w, grid_h
def get_num_patches(
self,
*,
image_width: int,
image_height: int,
processor: Optional[Idefics3Processor],
) -> int:
grid_w, grid_h = self._get_image_feature_grid_size(
image_width=image_width,
image_height=image_height,
processor=processor,
)
return grid_w * grid_h + 1
def _get_image_token(
self,
processor: Optional[Idefics3Processor]) -> tuple[str, str, str]:
if processor is None:
processor = self.get_hf_processor()
image_token = processor.image_token.content
fake_image_token = processor.fake_image_token.content
global_image_token = processor.global_image_tag
return image_token, fake_image_token, global_image_token
def get_image_repl(
self,
*,
image_width: int,
image_height: int,
processor: Optional[Idefics3Processor],
) -> str:
if processor is None:
processor = self.get_hf_processor()
image_token, fake_image_token, global_img_token = self._get_image_token(
processor)
image_seq_len = processor.image_seq_len
grid_placeholder = "<row_{n_h}_col_{n_w}>"
p_img = image_token * image_seq_len
global_img_placeholder = fake_image_token + global_img_token + p_img
tile_img_placeholder = fake_image_token + grid_placeholder + p_img
grid_w, grid_h = self._get_image_feature_grid_size(
image_width=image_width,
image_height=image_height,
processor=processor,
)
if grid_w == 0 and grid_h == 0:
return global_img_placeholder + fake_image_token
tiles_placeholder = list[str]()
for i in range(grid_h):
for j in range(grid_w):
placeholder_per_tile = tile_img_placeholder.format(n_h=i + 1,
n_w=j + 1)
tiles_placeholder.append(placeholder_per_tile)
# Add line break if it is the last tile in the row
if j == grid_w - 1:
tiles_placeholder.append("\n")
return "".join([
*tiles_placeholder,
"\n",
global_img_placeholder,
fake_image_token,
])
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
processor: Optional[Idefics3Processor],
) -> int:
if processor is None:
processor = self.get_hf_processor()
num_patches = self.get_num_patches(
image_width=image_width,
image_height=image_height,
processor=processor,
)
return num_patches * processor.image_seq_len
def get_image_size_with_most_features(self) -> ImageSize:
processor = self.get_hf_processor()
image_processor: Idefics3ImageProcessor = processor.image_processor
return ImageSize(
width=image_processor.size["longest_edge"],
height=image_processor.size["longest_edge"],
)
class Idefics3DummyInputsBuilder(BaseDummyInputsBuilder[Idefics3ProcessingInfo]
):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
num_images = mm_counts.get("image", 0)
hf_processor = self.info.get_hf_processor()
image_processor: Idefics3ImageProcessor = hf_processor.image_processor
longest_edge = image_processor.max_image_size['longest_edge']
image_token, _, _ = self.info._get_image_token(hf_processor)
mm_data = {
"image":
self._get_dummy_images(width=longest_edge,
height=longest_edge,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class Idefics3MultiModalProcessor(
BaseMultiModalProcessor[Idefics3ProcessingInfo]):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
# Text-only input not supported in composite processor
if not (images := mm_data.get("images", [])):
prompt_ids = self.info.get_tokenizer().encode(prompt)
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
processed_outputs = super()._call_hf_processor(
prompt,
mm_data,
mm_kwargs,
)
parsed_images = (self._get_data_parser().parse_mm_data({
"image": images
}).get_items("image", ImageProcessorItems))
image_sizes = [
parsed_images.get_image_size(i) for i in range(len(parsed_images))
]
hf_processor = self.info.get_hf_processor(**mm_kwargs)
num_patches = [
self.info.get_num_patches(
image_width=size.width,
image_height=size.height,
processor=hf_processor,
) for size in image_sizes
]
processed_outputs["num_patches"] = torch.tensor(num_patches)
# Remove the extra batch dimension
processed_outputs["pixel_values"].squeeze_(0)
processed_outputs["pixel_attention_mask"].squeeze_(0)
return processed_outputs
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
num_patches = hf_inputs.get("num_patches", torch.empty(0))
return dict(
pixel_values=MultiModalFieldConfig.flat_from_sizes(
"image", num_patches),
pixel_attention_mask=MultiModalFieldConfig.flat_from_sizes(
"image", num_patches),
image_embeds=MultiModalFieldConfig.batched("image"),
num_patches=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_token, _, _ = self.info._get_image_token(hf_processor)
def get_replacement_idefics3(item_idx: int) -> PromptUpdateDetails:
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
image_repl = self.info.get_image_repl(
image_width=image_size.width,
image_height=image_size.height,
processor=hf_processor,
)
return PromptUpdateDetails.select_text(
image_repl,
embed_text=image_token,
)
return [
PromptReplacement(
modality="image",
target=image_token,
replacement=get_replacement_idefics3,
)
]
class Idefics3SimpleMLP(nn.Module):
def __init__(
self,
config: Idefics3Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
input_size = config.vision_config.hidden_size * (config.scale_factor**
2)
output_size = config.text_config.hidden_size
self.proj = ReplicatedLinear(
input_size,
output_size,
bias=False,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "proj"),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out, _ = self.proj(x)
return out
class Idefics3Connector(nn.Module):
def __init__(
self,
config: Idefics3Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.scale_factor = config.scale_factor
self.modality_projection = Idefics3SimpleMLP(
config,
quant_config,
prefix=maybe_prefix(prefix, "modality_projection"),
)
def pixel_shuffle(self,
x: torch.Tensor,
scale_factor: int = 2) -> torch.Tensor:
bsz, seq, embed_dim = x.size()
height = width = int(seq**0.5)
x = x.view(bsz, height, width, embed_dim)
x = x.view(bsz, height, int(width / scale_factor),
embed_dim * scale_factor)
x = x.permute(0, 2, 1, 3)
x = x.reshape(
bsz,
int(width / scale_factor),
int(height / scale_factor),
embed_dim * (scale_factor**2),
)
x = x.permute(0, 2, 1, 3)
x = x.reshape(bsz, int(seq / (scale_factor**2)),
embed_dim * (scale_factor**2))
return x
def forward(self, image_hidden_states: torch.Tensor) -> torch.Tensor:
image_hidden_states = self.pixel_shuffle(image_hidden_states,
self.scale_factor)
image_hidden_states = self.modality_projection(image_hidden_states)
return image_hidden_states
class Idefics3Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: Idefics3Config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.vocab_size = self.config.text_config.vocab_size
self.vision_model = Idefics3VisionTransformer(
config.vision_config,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "vision_model"))
self.connector = Idefics3Connector(
config,
quant_config,
prefix=maybe_prefix(prefix, "connector"),
)
self.text_model = LlamaModel(
vllm_config=vllm_config.with_hf_config(config.text_config),
prefix=maybe_prefix(prefix, "text_model"),
)
self.image_seq_len = int(
((config.vision_config.image_size //
config.vision_config.patch_size)**2) / (config.scale_factor**2))
self.image_token_id = self.config.image_token_id
def image_pixels_to_features(
self,
pixel_values: torch.Tensor,
pixel_attention_mask: torch.Tensor,
) -> torch.Tensor:
# NOTE: we skip the step to select the vision feature layer since
# this is already done inside the vision tower
pixel_values = pixel_values.to(
dtype=self.vision_model.embeddings.patch_embedding.weight.dtype
) # fp16 compatibility
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(
dim=(-1, -2, -3)) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
# Remove padding images from the mask
pixel_attention_mask = pixel_attention_mask[
real_images_inds].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(dimension=1,
size=patch_size,
step=patch_size)
patches_subgrid = patches_subgrid.unfold(dimension=2,
size=patch_size,
step=patch_size)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
return image_hidden_states
def get_input_embeddings(
self,
input_ids: torch.Tensor,
) -> torch.Tensor:
return self.text_model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.text_model(
input_ids,
positions,
intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
@MULTIMODAL_REGISTRY.register_processor(
Idefics3MultiModalProcessor,
info=Idefics3ProcessingInfo,
dummy_inputs=Idefics3DummyInputsBuilder)
class Idefics3ForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self.model = Idefics3Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.image_token_id = self.config.image_token_id
self.lm_head = ParallelLMHead(
config.text_config.vocab_size,
config.text_config.hidden_size,
quant_config=quant_config,
)
if self.config.text_config.tie_word_embeddings:
self.lm_head.weight = self.model.text_model.wte.weight
self.logits_processor = LogitsProcessor(config.text_config.vocab_size)
self.sampler = get_sampler()
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
h = w = self.config.vision_config.image_size
expected_dims = (3, h, w)
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape)
if actual_dims != expected_dims:
expected_expr = str(expected_dims)
raise ValueError(
"The expected shape of pixel values per image per batch "
f" per patch is {expected_expr}. "
f"You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[ImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values is None and image_embeds is None:
return None
if image_embeds is not None:
if not isinstance(image_embeds, (torch.Tensor, list)):
raise ValueError("Incorrect type of image embeddings. "
f"Got type: {type(image_embeds)}")
return Idefics3ImageEmbeddingInputs(
type="image_embeds",
data=flatten_bn(image_embeds, concat=True),
)
if pixel_values is not None:
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
pixel_attention_mask = kwargs.pop("pixel_attention_mask")
if not isinstance(pixel_attention_mask, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel_attention_mask. "
f"Got type: {type(pixel_attention_mask)}")
num_patches = kwargs.pop("num_patches")
if not isinstance(num_patches, (torch.Tensor, list)):
raise ValueError("Incorrect type of num_patches. "
f"Got type: {type(num_patches)}")
pixel_values = flatten_bn(pixel_values, concat=True)
pixel_attention_mask = flatten_bn(pixel_attention_mask,
concat=True)
num_patches = flatten_bn(num_patches, concat=True)
return Idefics3ImagePixelInputs(
type="pixel_values",
pixel_values=self._validate_pixel_values(pixel_values),
pixel_attention_mask=pixel_attention_mask,
num_patches=num_patches,
)
raise AssertionError("This line should be unreachable.")
def _process_image_pixels(
self, inputs: Idefics3ImagePixelInputs) -> torch.Tensor:
pixel_values = inputs["pixel_values"]
pixel_attention_mask = inputs["pixel_attention_mask"]
return self.model.image_pixels_to_features(
pixel_values,
pixel_attention_mask=pixel_attention_mask,
)
def _process_image_input(
self,
image_input: ImageInputs,
) -> Union[torch.Tensor, list[torch.Tensor]]:
if image_input["type"] == "image_embeds":
return image_input["data"]
image_features = self._process_image_pixels(image_input)
image_features = self.model.connector(image_features)
num_patches = image_input["num_patches"]
return [
e.flatten(0, 1) for e in image_features.split(num_patches.tolist())
]
def get_language_model(self) -> torch.nn.Module:
return self.model
def get_multimodal_embeddings(
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
return self._process_image_input(image_input)
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids,
inputs_embeds,
multimodal_embeddings,
self.config.image_token_id,
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None
hidden_states = self.model.text_model(input_ids,
positions,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="model.text_model",
connector="model.connector",
tower_model="model.vision_model")