663 lines
25 KiB
Python
663 lines
25 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py
|
|
"""Inference-only Deepseek-VL2 model compatible with HuggingFace weights."""
|
|
import math
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from functools import cached_property
|
|
from typing import List, Literal, Optional, Set, Tuple, TypedDict, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from einops import rearrange, repeat
|
|
from transformers import BatchFeature
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor import SamplingMetadata
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
|
|
NestedTensors)
|
|
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
|
|
ImageSize, MultiModalDataItems)
|
|
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
|
BaseProcessingInfo, PromptReplacement,
|
|
PromptUpdate)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config,
|
|
MlpProjectorConfig,
|
|
VisionEncoderConfig)
|
|
from vllm.transformers_utils.processors.deepseek_vl2 import (
|
|
DeepseekVLV2Processor)
|
|
from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
|
|
from vllm.utils import is_list_of
|
|
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
|
|
init_vllm_registered_model, maybe_prefix,
|
|
merge_multimodal_embeddings)
|
|
|
|
# The image token id may be various
|
|
_IMAGE_TOKEN = "<image>"
|
|
|
|
|
|
class DeepseekVL2ImagePixelInputs(TypedDict):
|
|
type: Literal["pixel_values"]
|
|
data: Union[torch.Tensor, List[torch.Tensor]]
|
|
"""
|
|
Shape: `(batch_size * num_images, num_channels, height, width)`
|
|
"""
|
|
images_spatial_crop: torch.Tensor
|
|
"""
|
|
Shape: `(batch_size * num_images, 2)`
|
|
"""
|
|
|
|
|
|
class DeepseekVL2VImageEmbeddingInputs(TypedDict):
|
|
type: Literal["image_embeds"]
|
|
data: Union[torch.Tensor, List[torch.Tensor]]
|
|
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
|
|
|
|
`hidden_size` must match the hidden size of language model backbone.
|
|
"""
|
|
|
|
|
|
DeepseekVL2ImageInputs = Union[DeepseekVL2ImagePixelInputs,
|
|
DeepseekVL2VImageEmbeddingInputs]
|
|
|
|
|
|
class MlpProjector(nn.Module):
|
|
|
|
def __init__(self, cfg: MlpProjectorConfig):
|
|
|
|
super().__init__()
|
|
|
|
self.cfg = cfg
|
|
assert not cfg.token_pooling, (
|
|
"Token pooling is not supported currently.")
|
|
|
|
if cfg.projector_type == "downsample_mlp_gelu":
|
|
mlp_depth = cfg.depth
|
|
mlp_ratio = cfg.mlp_ratio
|
|
modules = [
|
|
nn.Linear(
|
|
cfg.input_dim * cfg.downsample_ratio *
|
|
cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
|
|
]
|
|
for _ in range(1, mlp_depth - 1):
|
|
modules.append(nn.GELU())
|
|
modules.append(
|
|
nn.Linear(cfg.n_embed * mlp_ratio,
|
|
cfg.n_embed * mlp_ratio))
|
|
modules.append(nn.GELU())
|
|
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
|
|
modules = nn.Sequential(*modules)
|
|
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unsupported projector type: {cfg.projector_type}")
|
|
|
|
self.layers = modules
|
|
|
|
def forward(self, x):
|
|
bs, hw, input_dim = x.shape
|
|
h = w = int((hw)**0.5)
|
|
"""compute padding"""
|
|
if h % self.cfg.downsample_ratio:
|
|
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
|
|
else:
|
|
pad = 0
|
|
x = x.reshape(bs, h, w, input_dim)
|
|
if pad > 0:
|
|
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
|
|
"""4 to 1 concat"""
|
|
x = x.permute(0, 3, 1, 2) # B, C, H, W
|
|
x = F.unfold(x,
|
|
kernel_size=self.cfg.downsample_ratio,
|
|
stride=self.cfg.downsample_ratio,
|
|
padding=0) # B, C*4, HW // 4
|
|
x = x.permute(0, 2, 1)
|
|
|
|
return self.layers(x)
|
|
|
|
|
|
class DeepseekVL2ProcessingInfo(BaseProcessingInfo):
|
|
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(DeepseekVLV2Config)
|
|
|
|
def get_hf_processor(self, **kwargs: object):
|
|
return self.ctx.get_hf_processor(DeepseekVLV2Processor, **kwargs)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"image": None}
|
|
|
|
def get_num_image_tokens(self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
cropping: bool = True) -> int:
|
|
hf_processor = self.get_hf_processor()
|
|
image_size = hf_processor.image_size
|
|
patch_size = hf_processor.patch_size
|
|
downsample_ratio = hf_processor.downsample_ratio
|
|
|
|
if cropping:
|
|
best_width, best_height = hf_processor.select_best_resolution(
|
|
(image_width, image_height))
|
|
num_width_tiles, num_height_tiles = (best_width // image_size,
|
|
best_height // image_size)
|
|
else:
|
|
num_width_tiles = num_height_tiles = 1
|
|
|
|
h = w = math.ceil((image_size // patch_size) / downsample_ratio)
|
|
|
|
global_views_tokens = h * (w + 1)
|
|
local_views_tokens = (num_height_tiles * h) * (num_width_tiles * w + 1)
|
|
return global_views_tokens + local_views_tokens + 1
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
hf_config = self.get_hf_config()
|
|
candidate_resolutions = hf_config.candidate_resolutions
|
|
height, width = max(candidate_resolutions,
|
|
key=lambda x: self.get_num_image_tokens(
|
|
image_width=x[1], image_height=x[0]))
|
|
return ImageSize(width=width, height=height)
|
|
|
|
|
|
class DeepseekVL2DummyInputsBuilder(
|
|
BaseDummyInputsBuilder[DeepseekVL2ProcessingInfo]):
|
|
|
|
def get_dummy_processor_inputs(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> ProcessorInputs:
|
|
num_images = mm_counts.get("image", 0)
|
|
hf_processor = self.info.get_hf_processor()
|
|
image_token: str = hf_processor.image_token
|
|
|
|
max_image_size = self.info.get_image_size_with_most_features()
|
|
|
|
mm_data = {
|
|
"image":
|
|
self._get_dummy_images(width=max_image_size.width,
|
|
height=max_image_size.height,
|
|
num_images=num_images)
|
|
}
|
|
|
|
return ProcessorInputs(
|
|
prompt_text=image_token * num_images,
|
|
mm_data=mm_data,
|
|
)
|
|
|
|
|
|
class DeepseekVL2MultiModalProcessor(
|
|
BaseMultiModalProcessor[DeepseekVL2ProcessingInfo]):
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
if mm_data:
|
|
processed_outputs = self.info.ctx.call_hf_processor(
|
|
self.info.get_hf_processor(**mm_kwargs),
|
|
dict(prompt=prompt, **mm_data),
|
|
mm_kwargs,
|
|
)
|
|
target_dtype = self.info.ctx.model_config.dtype
|
|
pixel_values = processed_outputs.pop("pixel_values").to(
|
|
target_dtype)
|
|
# split pixel values into patches corresponding to each image
|
|
images_spatial_crop = processed_outputs["images_spatial_crop"]
|
|
patches_per_image = [
|
|
x.prod().item() + 1 for x in images_spatial_crop
|
|
]
|
|
pixel_values = pixel_values.split(patches_per_image)
|
|
processed_outputs["pixel_values"] = pixel_values
|
|
else:
|
|
tokenizer = self.info.get_tokenizer()
|
|
processed_outputs = tokenizer(prompt,
|
|
add_special_tokens=True,
|
|
return_tensors="pt")
|
|
|
|
return processed_outputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.batched("image"),
|
|
images_spatial_crop=MultiModalFieldConfig.batched("image"),
|
|
image_embeds=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
) -> Sequence[PromptUpdate]:
|
|
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
|
|
image_token_id = hf_processor.image_token_id
|
|
assert isinstance(image_token_id, int)
|
|
|
|
def get_replacement_deepseek_vl2(item_idx: int):
|
|
images = mm_items.get_items(
|
|
"image", (ImageEmbeddingItems, ImageProcessorItems))
|
|
|
|
if isinstance(images, ImageEmbeddingItems):
|
|
num_image_tokens = images.get_feature_size(item_idx)
|
|
else:
|
|
image_size = images.get_image_size(item_idx)
|
|
|
|
num_image_tokens = self.info.get_num_image_tokens(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
cropping=len(images) <= 2,
|
|
)
|
|
return [image_token_id] * num_image_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=[image_token_id],
|
|
replacement=get_replacement_deepseek_vl2,
|
|
)
|
|
]
|
|
|
|
def _cached_apply_hf_processor(
|
|
self,
|
|
prompt: Union[str, list[int]],
|
|
mm_data_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> tuple[list[int], MultiModalKwargs, bool]:
|
|
# The processor logic is different for len(images) <= 2 vs > 2
|
|
# Since the processing cache assumes that the processor output is
|
|
# invariant of how many images are passed per prompt, we only
|
|
# perform caching for the most common case
|
|
if mm_data_items.get_count("image", strict=False) > 2:
|
|
# This code path corresponds to the cache being disabled
|
|
return self._apply_hf_processor_main(
|
|
prompt=prompt,
|
|
mm_items=mm_data_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
enable_hf_prompt_update=True,
|
|
)
|
|
|
|
return super()._cached_apply_hf_processor(
|
|
prompt=prompt,
|
|
mm_data_items=mm_data_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
)
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
DeepseekVL2MultiModalProcessor,
|
|
info=DeepseekVL2ProcessingInfo,
|
|
dummy_inputs=DeepseekVL2DummyInputsBuilder)
|
|
class DeepseekVLV2ForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
|
|
"language.": "language_model.",
|
|
})
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config: DeepseekVLV2Config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
self.vision_config = config.vision_config
|
|
self.projector_config = config.projector_config
|
|
self.text_config = config.text_config
|
|
|
|
model_config = vllm_config.model_config
|
|
tokenizer = cached_tokenizer_from_config(model_config)
|
|
self.image_token_id = tokenizer.vocab[_IMAGE_TOKEN]
|
|
|
|
self.vision = self._init_vision_module(self.vision_config,
|
|
quant_config,
|
|
maybe_prefix(prefix, "vision"))
|
|
|
|
self.projector = MlpProjector(self.projector_config)
|
|
self.tile_tag = config.tile_tag
|
|
self.global_view_pos = config.global_view_pos
|
|
|
|
# special token for image token sequence format
|
|
embed_std = 1 / torch.sqrt(
|
|
torch.tensor(self.projector_config.n_embed, dtype=torch.float32))
|
|
if self.tile_tag == "2D":
|
|
# <|view_separator|>, <|\n|>
|
|
self.image_newline = nn.Parameter(
|
|
torch.randn(self.projector_config.n_embed) * embed_std)
|
|
# This is a typo in original implementation
|
|
self.view_seperator = nn.Parameter(
|
|
torch.randn(self.projector_config.n_embed) * embed_std)
|
|
else:
|
|
raise ValueError(
|
|
f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
|
|
)
|
|
|
|
if self.text_config.topk_method == "noaux_tc":
|
|
architectures = ["DeepseekV3ForCausalLM"]
|
|
elif not self.text_config.use_mla:
|
|
architectures = ["DeepseekForCausalLM"]
|
|
else:
|
|
architectures = ["DeepseekV2ForCausalLM"]
|
|
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=self.text_config,
|
|
prefix=maybe_prefix(prefix, "language"),
|
|
architectures=architectures,
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors)
|
|
|
|
def _init_vision_module(
|
|
self,
|
|
vision_config: VisionEncoderConfig,
|
|
quant_config: Optional[QuantizationConfig],
|
|
prefix: str = "",
|
|
) -> nn.Module:
|
|
# TODO: refactor vision model through timm wrapper from transformers
|
|
try:
|
|
import timm
|
|
except ImportError:
|
|
raise ImportError("Please install timm") from ImportError
|
|
|
|
with set_default_torch_dtype(torch.float16):
|
|
model = timm.create_model(
|
|
"vit_so400m_patch14_siglip_384.webli",
|
|
pretrained=False,
|
|
num_classes=0,
|
|
dynamic_img_size=True,
|
|
dynamic_img_pad=True,
|
|
)
|
|
|
|
model = model.to(dtype=torch.get_default_dtype())
|
|
return model
|
|
|
|
@cached_property
|
|
def sampler(self):
|
|
if hasattr(self.language_model, "sampler"):
|
|
return self.language_model.sampler
|
|
|
|
return get_sampler()
|
|
|
|
def _validate_pixel_values(
|
|
self, data: Union[torch.Tensor, List[torch.Tensor]]
|
|
) -> Union[torch.Tensor, List[torch.Tensor]]:
|
|
|
|
h = w = self.vision_config.image_size
|
|
expected_dims = (3, h, w)
|
|
|
|
def _validate_shape(d: torch.Tensor):
|
|
actual_dims = tuple(d.shape[1:])
|
|
|
|
if actual_dims != expected_dims:
|
|
expected_expr = ("num_patches", *map(str, expected_dims))
|
|
raise ValueError(
|
|
"The expected shape of pixel values per image per batch "
|
|
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
|
|
|
|
for d in data:
|
|
_validate_shape(d)
|
|
|
|
return data
|
|
|
|
def _validate_images_spatial_crop(
|
|
self, data: Union[torch.Tensor, List[torch.Tensor]]
|
|
) -> Union[torch.Tensor, List[torch.Tensor]]:
|
|
expected_dims = 2
|
|
|
|
def _validate_shape(d: torch.Tensor):
|
|
actual_dims = d.size(-1)
|
|
|
|
if actual_dims != expected_dims:
|
|
expected_expr = str(expected_dims)
|
|
raise ValueError(
|
|
f"The expected shape of image sizes per image per batch "
|
|
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
|
|
|
|
for d in data:
|
|
_validate_shape(d)
|
|
|
|
return data
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object) -> Optional[DeepseekVL2ImageInputs]:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
images_spatial_crop = kwargs.pop("images_spatial_crop", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None:
|
|
if not isinstance(pixel_values, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of pixel values. "
|
|
f"Got type: {type(pixel_values)}")
|
|
|
|
if not isinstance(images_spatial_crop, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of image sizes. "
|
|
f"Got type: {type(images_spatial_crop)}")
|
|
|
|
return DeepseekVL2ImagePixelInputs(
|
|
type="pixel_values",
|
|
data=self._validate_pixel_values(flatten_bn(pixel_values)),
|
|
images_spatial_crop=self._validate_images_spatial_crop(
|
|
flatten_bn(images_spatial_crop, concat=True)))
|
|
|
|
if image_embeds is not None:
|
|
if not isinstance(image_embeds, (torch.Tensor, list)):
|
|
raise ValueError("Incorrect type of image embeddings. "
|
|
f"Got type: {type(image_embeds)}")
|
|
|
|
return DeepseekVL2VImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
data=flatten_bn(image_embeds),
|
|
)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _pixel_values_to_embedding(
|
|
self,
|
|
pixel_values: NestedTensors,
|
|
images_spatial_crop: torch.Tensor,
|
|
) -> NestedTensors:
|
|
# Pixel_values: n_image * batch_size * [patch_per_img, 3, height, width]
|
|
total_tiles = [x for x in pixel_values]
|
|
|
|
# [batch_all_tiles, 3, height, width]
|
|
total_tiles = torch.cat(total_tiles, dim=0)
|
|
|
|
# [batch_all_tiles, vit_seq_len, c]
|
|
images_feature = self.vision.forward_features(total_tiles)
|
|
|
|
# [batch_all_tiles, hw, D]
|
|
images_embeds = self.projector(images_feature)
|
|
|
|
_, hw, n_dim = images_embeds.shape
|
|
h = w = int(hw**0.5)
|
|
|
|
# fill image token based on self.tile_tag & self.global_view_pos
|
|
tile_index = 0
|
|
vision_embeddings = []
|
|
for jdx in range(images_spatial_crop.size(0)):
|
|
# extra global & local features
|
|
num_width_tiles, num_height_tiles = images_spatial_crop[jdx]
|
|
if num_width_tiles == 0 or num_height_tiles == 0:
|
|
break
|
|
num_tiles_in_image = num_width_tiles * num_height_tiles
|
|
|
|
# [hw, D]
|
|
global_features = images_embeds[tile_index]
|
|
|
|
# [num_height_tiles * num_width_tiles, hw, D]
|
|
local_features = images_embeds[tile_index + 1:tile_index + 1 +
|
|
num_tiles_in_image]
|
|
tile_index += num_tiles_in_image + 1
|
|
|
|
# format global and local features
|
|
# ----------------- global view add newline -----------------
|
|
# [hw, D] -> [h, w, D]
|
|
global_features = global_features.view(h, w, n_dim)
|
|
|
|
# [D] -> [h, 1, D]
|
|
new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
|
|
|
|
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
|
|
global_features = torch.cat([global_features, new_lines_in_global],
|
|
dim=1)
|
|
|
|
# [h, w + 1, D] -> [h * (w + 1), D]
|
|
global_features = global_features.view(-1, n_dim)
|
|
|
|
# ----------------- local view add newline -----------------
|
|
# [num_height_tiles * num_width_tiles, h * w, D] ->
|
|
# [num_height_tiles * h, num_width_tiles * w, D]
|
|
local_features = rearrange(local_features,
|
|
"(th tw) (h w) d -> (th h) (tw w) d",
|
|
th=num_height_tiles,
|
|
tw=num_width_tiles,
|
|
h=h,
|
|
w=w)
|
|
|
|
# [D] -> [num_height_tiles * h, 1, D]
|
|
new_lines_in_local = repeat(self.image_newline,
|
|
"d -> (th h) 1 d",
|
|
th=num_height_tiles,
|
|
h=h)
|
|
|
|
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
|
local_features = torch.cat([local_features, new_lines_in_local],
|
|
dim=1)
|
|
|
|
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
|
# --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
|
|
local_features = local_features.view(-1, n_dim)
|
|
|
|
# merge global and local tiles
|
|
if self.global_view_pos == "head":
|
|
global_local_features = torch.cat([
|
|
global_features,
|
|
self.view_seperator[None, :],
|
|
local_features,
|
|
])
|
|
else:
|
|
global_local_features = torch.cat([
|
|
local_features,
|
|
self.view_seperator[None, :],
|
|
global_features,
|
|
])
|
|
|
|
vision_embeddings.append(global_local_features)
|
|
return vision_embeddings
|
|
|
|
def _process_image_input(
|
|
self, image_input: DeepseekVL2ImageInputs) -> torch.Tensor:
|
|
if image_input["type"] == "image_embeds":
|
|
image_data = image_input["data"]
|
|
if is_list_of(image_data, torch.Tensor):
|
|
# it's already a list of tensors
|
|
return image_data
|
|
if len(image_data.shape) == 3:
|
|
# 3D tensor
|
|
return list(torch.unbind(image_data, dim=0))
|
|
raise ValueError(
|
|
"We expect batched 2D tensors; "
|
|
"this can be either a list of 2D tensors or a single 3D tensor."
|
|
)
|
|
|
|
pixel_values = image_input["data"]
|
|
images_spatial_crop = image_input["images_spatial_crop"]
|
|
|
|
return self._pixel_values_to_embedding(
|
|
pixel_values=pixel_values, images_spatial_crop=images_spatial_crop)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_multimodal_embeddings(
|
|
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return None
|
|
vision_embeddings = self._process_image_input(image_input)
|
|
return vision_embeddings
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
|
|
if multimodal_embeddings is not None:
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids, inputs_embeds, multimodal_embeddings,
|
|
self.image_token_id)
|
|
return inputs_embeds
|
|
|
|
def forward(self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs: object):
|
|
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
|
# condition is for v0 compatibility
|
|
elif inputs_embeds is None:
|
|
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
|
|
inputs_embeds = self.get_input_embeddings(input_ids,
|
|
vision_embeddings)
|
|
input_ids = None
|
|
|
|
hidden_states = self.language_model(input_ids,
|
|
positions,
|
|
intermediate_tensors,
|
|
inputs_embeds=inputs_embeds)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
return self.language_model.compute_logits(hidden_states,
|
|
sampling_metadata)
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
return self.language_model.sample(logits, sampling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
|
|
loader = AutoWeightsLoader(self)
|
|
autoloaded_weights = loader.load_weights(weights,
|
|
mapper=self.hf_to_vllm_mapper)
|
|
return autoloaded_weights
|