82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
from typing import List
|
|
|
|
import pytest
|
|
|
|
import vllm
|
|
from vllm.assets.image import ImageAsset
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.platforms import current_platform
|
|
|
|
MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct"
|
|
|
|
PROMPT_TEMPLATE = (
|
|
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>"
|
|
"\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>"
|
|
"What is in the image?<|im_end|>\n"
|
|
"<|im_start|>assistant\n")
|
|
|
|
IMAGE_ASSETS = [
|
|
ImageAsset("stop_sign"),
|
|
ImageAsset("cherry_blossom"),
|
|
]
|
|
|
|
# After fine-tuning with LoRA, all generated content should start begin `A`.
|
|
EXPECTED_OUTPUT = [
|
|
"A red stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501
|
|
"A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501
|
|
]
|
|
|
|
|
|
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
|
|
sampling_params = vllm.SamplingParams(
|
|
temperature=0,
|
|
max_tokens=5,
|
|
)
|
|
|
|
inputs = [{
|
|
"prompt": PROMPT_TEMPLATE,
|
|
"multi_modal_data": {
|
|
"image": asset.pil_image
|
|
},
|
|
} for asset in IMAGE_ASSETS]
|
|
|
|
outputs = llm.generate(
|
|
inputs,
|
|
sampling_params,
|
|
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
|
if lora_id else None,
|
|
)
|
|
# Print the outputs.
|
|
generated_texts: List[str] = []
|
|
for output in outputs:
|
|
generated_text = output.outputs[0].text.strip()
|
|
generated_texts.append(generated_text)
|
|
print(f"Generated text: {generated_text!r}")
|
|
return generated_texts
|
|
|
|
|
|
@pytest.mark.xfail(
|
|
current_platform.is_rocm(),
|
|
reason="Qwen2-VL dependency xformers incompatible with ROCm")
|
|
def test_qwen2vl_lora(qwen2vl_lora_files):
|
|
llm = vllm.LLM(
|
|
MODEL_PATH,
|
|
max_num_seqs=2,
|
|
enable_lora=True,
|
|
max_loras=2,
|
|
max_lora_rank=16,
|
|
trust_remote_code=True,
|
|
mm_processor_kwargs={
|
|
"min_pixels": 28 * 28,
|
|
"max_pixels": 1280 * 28 * 28,
|
|
},
|
|
max_model_len=4096,
|
|
)
|
|
output1 = do_sample(llm, qwen2vl_lora_files, lora_id=1)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output1[i])
|
|
|
|
output2 = do_sample(llm, qwen2vl_lora_files, lora_id=2)
|
|
for i in range(len(EXPECTED_OUTPUT)):
|
|
assert EXPECTED_OUTPUT[i].startswith(output2[i])
|