
Removing the block manager v1. This is the initial piece of prefix-caching-centric design. In order to achieve prefix-caching-centric design, we need to simplify the code path so that we only use v2 block manager (which has much higher performance on prefix caching).
779 lines
31 KiB
Python
779 lines
31 KiB
Python
"""Attention layer with FlashAttention."""
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionMetadata,
|
|
AttentionMetadataBuilder,
|
|
AttentionType)
|
|
from vllm.attention.backends.utils import (PAD_SLOT_ID, CommonAttentionState,
|
|
compute_slot_mapping,
|
|
compute_slot_mapping_start_idx,
|
|
is_block_tables_empty)
|
|
from vllm.forward_context import get_forward_context
|
|
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.worker.model_runner import (ModelInputForGPUBuilder,
|
|
ModelInputForGPUWithSamplingMetadata)
|
|
|
|
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
|
|
flash_attn_with_kvcache)
|
|
|
|
|
|
class FlashAttentionBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_supported_head_sizes() -> List[int]:
|
|
return [32, 64, 96, 128, 160, 192, 224, 256]
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "flash-attn"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> Type["FlashAttentionImpl"]:
|
|
return FlashAttentionImpl
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
|
return FlashAttentionMetadata
|
|
|
|
@staticmethod
|
|
def get_builder_cls() -> Type["FlashAttentionMetadataBuilder"]:
|
|
return FlashAttentionMetadataBuilder
|
|
|
|
@staticmethod
|
|
def get_state_cls() -> Type["CommonAttentionState"]:
|
|
return CommonAttentionState
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
if block_size % 16 != 0:
|
|
raise ValueError("Block size must be a multiple of 16.")
|
|
return (2, num_blocks, block_size, num_kv_heads, head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: torch.Tensor,
|
|
) -> None:
|
|
src_key_cache = src_kv_cache[0]
|
|
dst_key_cache = dst_kv_cache[0]
|
|
ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
|
|
|
|
src_value_cache = src_kv_cache[1]
|
|
dst_value_cache = dst_kv_cache[1]
|
|
ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
|
|
|
|
@staticmethod
|
|
def copy_blocks(
|
|
kv_caches: List[torch.Tensor],
|
|
src_to_dists: torch.Tensor,
|
|
) -> None:
|
|
key_caches = [kv_cache[0] for kv_cache in kv_caches]
|
|
value_caches = [kv_cache[1] for kv_cache in kv_caches]
|
|
ops.copy_blocks(key_caches, value_caches, src_to_dists)
|
|
|
|
|
|
@dataclass
|
|
class FlashAttentionMetadata(AttentionMetadata):
|
|
"""Metadata for FlashAttentionBackend.
|
|
|
|
NOTE: Any python object stored here is not updated when it is
|
|
cuda-graph replayed. If you have values that need to be changed
|
|
dynamically, it should be stored in tensor. The tensor has to be
|
|
updated from `CUDAGraphRunner.forward` API.
|
|
"""
|
|
# (batch_size,). The sequence length per sequence. Sequence length means
|
|
# the computed tokens + new tokens None if it is a decoding.
|
|
seq_lens: Optional[List[int]]
|
|
# seq_lens stored as a tensor.
|
|
seq_lens_tensor: Optional[torch.Tensor]
|
|
|
|
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ---------------------|
|
|
# |-- query_len ---|
|
|
|
|
# Maximum query length in the batch.
|
|
max_query_len: Optional[int]
|
|
|
|
# Max number of query tokens among request in the batch.
|
|
max_decode_query_len: Optional[int]
|
|
|
|
# Maximum sequence length among prefill batch. 0 if there are decoding
|
|
# requests only.
|
|
max_prefill_seq_len: int
|
|
# Maximum sequence length among decode batch. 0 if there are prefill
|
|
# requests only.
|
|
max_decode_seq_len: int
|
|
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
|
# the batch, used to index into subquery. E.g., if the subquery length
|
|
# is [4, 6], it is [0, 4, 10].
|
|
query_start_loc: Optional[torch.Tensor]
|
|
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
|
# the batch, used to index into sequence. E.g., if the sequence length is
|
|
# [4, 6], it is [0, 4, 10].
|
|
seq_start_loc: Optional[torch.Tensor]
|
|
# (batch_size,) A tensor of context lengths (tokens that are computed
|
|
# so far).
|
|
context_lens_tensor: Optional[torch.Tensor]
|
|
|
|
# (batch_size, max_blocks_per_seq).
|
|
# Block addresses per sequence. (Seq id -> list of physical block)
|
|
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
|
|
# in the kv cache. Each block can contain up to block_size tokens.
|
|
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
|
|
# captured.
|
|
block_tables: Optional[torch.Tensor]
|
|
|
|
# Whether or not if cuda graph is enabled.
|
|
# Cuda-graph is currently enabled for decoding only.
|
|
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
|
use_cuda_graph: bool
|
|
|
|
_cached_prefill_metadata: Optional["FlashAttentionMetadata"] = None
|
|
_cached_decode_metadata: Optional["FlashAttentionMetadata"] = None
|
|
|
|
@property
|
|
def prefill_metadata(self) -> Optional["FlashAttentionMetadata"]:
|
|
if self.num_prefills == 0:
|
|
return None
|
|
|
|
if self._cached_prefill_metadata is not None:
|
|
return self._cached_prefill_metadata
|
|
|
|
assert self.seq_lens is not None
|
|
assert self.seq_lens_tensor is not None
|
|
assert self.query_start_loc is not None
|
|
assert self.context_lens_tensor is not None
|
|
assert self.block_tables is not None
|
|
assert self.seq_start_loc is not None
|
|
|
|
self._cached_prefill_metadata = FlashAttentionMetadata(
|
|
num_prefills=self.num_prefills,
|
|
num_prefill_tokens=self.num_prefill_tokens,
|
|
num_decode_tokens=0,
|
|
slot_mapping=self.slot_mapping[:self.num_prefill_tokens],
|
|
seq_lens=self.seq_lens[:self.num_prefills],
|
|
seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills],
|
|
max_query_len=self.max_query_len,
|
|
max_prefill_seq_len=self.max_prefill_seq_len,
|
|
max_decode_query_len=0,
|
|
max_decode_seq_len=0,
|
|
query_start_loc=self.query_start_loc[:self.num_prefills + 1],
|
|
seq_start_loc=self.seq_start_loc[:self.num_prefills + 1],
|
|
context_lens_tensor=self.context_lens_tensor[:self.num_prefills],
|
|
block_tables=self.block_tables[:self.num_prefills],
|
|
use_cuda_graph=False,
|
|
)
|
|
return self._cached_prefill_metadata
|
|
|
|
@property
|
|
def decode_metadata(self) -> Optional["FlashAttentionMetadata"]:
|
|
if self.num_decode_tokens == 0:
|
|
return None
|
|
|
|
if self._cached_decode_metadata is not None:
|
|
return self._cached_decode_metadata
|
|
assert self.block_tables is not None
|
|
assert self.seq_lens_tensor is not None
|
|
|
|
self._cached_decode_metadata = FlashAttentionMetadata(
|
|
num_prefills=0,
|
|
num_prefill_tokens=0,
|
|
num_decode_tokens=self.num_decode_tokens,
|
|
slot_mapping=self.slot_mapping[self.num_prefill_tokens:],
|
|
seq_lens=None,
|
|
seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:],
|
|
max_decode_query_len=self.max_decode_query_len,
|
|
max_query_len=self.max_query_len,
|
|
max_prefill_seq_len=0,
|
|
max_decode_seq_len=self.max_decode_seq_len,
|
|
query_start_loc=self.query_start_loc[self.num_prefills:]
|
|
if self.query_start_loc is not None else None,
|
|
seq_start_loc=self.seq_start_loc[self.num_prefills:]
|
|
if self.seq_start_loc is not None else None,
|
|
context_lens_tensor=None,
|
|
block_tables=self.block_tables[self.num_prefills:],
|
|
use_cuda_graph=self.use_cuda_graph,
|
|
)
|
|
return self._cached_decode_metadata
|
|
|
|
def advance_step(self,
|
|
model_input: "ModelInputForGPUWithSamplingMetadata",
|
|
sampled_token_ids: Optional[torch.Tensor],
|
|
block_size: int,
|
|
num_seqs: int,
|
|
num_queries: int,
|
|
turn_prefills_into_decodes: bool = False):
|
|
"""
|
|
Update metadata in-place to advance one decode step.
|
|
"""
|
|
# When using cudagraph, the num_seqs is padded to the next captured
|
|
# batch sized, but num_queries tracks the actual number of requests in
|
|
# the batch. For --enforce-eager mode, num_seqs == num_queries
|
|
if num_seqs != num_queries:
|
|
assert num_seqs > num_queries
|
|
assert self.use_cuda_graph
|
|
|
|
if turn_prefills_into_decodes:
|
|
# When Mutli-Step is enabled with Chunked-Prefill, prefills and
|
|
# decodes are scheduled together. In the first step, all the
|
|
# prefills turn into decodes. This update reflects that
|
|
# conversion.
|
|
assert self.num_decode_tokens + self.num_prefills == num_seqs
|
|
self.num_decode_tokens += self.num_prefills
|
|
self.num_prefills = 0
|
|
self.num_prefill_tokens = 0
|
|
self.max_prefill_seq_len = 0
|
|
self.max_query_len = 1
|
|
|
|
self.slot_mapping = self.slot_mapping[:num_seqs]
|
|
else:
|
|
assert self.seq_lens is not None
|
|
assert self.max_decode_seq_len == max(self.seq_lens)
|
|
|
|
assert self.num_prefills == 0
|
|
assert self.num_prefill_tokens == 0
|
|
assert self.num_decode_tokens == num_seqs
|
|
assert self.slot_mapping.shape == (num_seqs, )
|
|
|
|
assert self.seq_lens is not None
|
|
assert len(self.seq_lens) == num_seqs
|
|
assert self.seq_lens_tensor is not None
|
|
assert self.seq_lens_tensor.shape == (num_seqs, )
|
|
assert self.max_query_len == 1
|
|
assert self.max_prefill_seq_len == 0
|
|
|
|
assert self.query_start_loc is not None
|
|
assert self.query_start_loc.shape == (num_queries + 1, )
|
|
assert self.seq_start_loc is not None
|
|
assert self.seq_start_loc.shape == (num_seqs + 1, )
|
|
|
|
assert self.context_lens_tensor is not None
|
|
assert self.context_lens_tensor.shape == (num_queries, )
|
|
|
|
assert self.block_tables is not None
|
|
assert self.block_tables.shape[0] == num_seqs
|
|
|
|
# Update query lengths. Note that we update only queries and not seqs,
|
|
# since tensors may be padded due to captured cuda graph batch size
|
|
for i in range(num_queries):
|
|
self.seq_lens[i] += 1
|
|
self.max_decode_seq_len = max(self.seq_lens)
|
|
|
|
ops.advance_step_flashattn(num_seqs=num_seqs,
|
|
num_queries=num_queries,
|
|
block_size=block_size,
|
|
input_tokens=model_input.input_tokens,
|
|
sampled_token_ids=sampled_token_ids,
|
|
input_positions=model_input.input_positions,
|
|
seq_lens=self.seq_lens_tensor,
|
|
slot_mapping=self.slot_mapping,
|
|
block_tables=self.block_tables)
|
|
|
|
|
|
class FlashAttentionMetadataBuilder(
|
|
AttentionMetadataBuilder[FlashAttentionMetadata]):
|
|
|
|
def __init__(self, input_builder: "ModelInputForGPUBuilder"):
|
|
self.slot_mapping: List[int] = []
|
|
self.prefill_seq_lens: List[int] = []
|
|
self.context_lens: List[int] = []
|
|
self.block_tables: List[List[int]] = []
|
|
self.curr_seq_lens: List[int] = []
|
|
self.num_prefills = 0
|
|
self.num_prefill_tokens = 0
|
|
self.num_decode_tokens = 0
|
|
self.has_prefix_cache_hit = False
|
|
|
|
self.input_builder = input_builder
|
|
self.runner = input_builder.runner
|
|
self.sliding_window = input_builder.sliding_window
|
|
self.block_size = input_builder.block_size
|
|
|
|
def _add_seq_group(
|
|
self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
|
|
chunked_prefill_enabled: bool, prefix_cache_hit: bool):
|
|
"""Add a sequence group to the metadata. Specifically update/append
|
|
1. context length.
|
|
2. block table.
|
|
3. slot mapping.
|
|
"""
|
|
is_prompt = inter_data.is_prompt
|
|
block_tables = inter_data.block_tables
|
|
|
|
for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
|
|
curr_sliding_window_block) in zip(
|
|
inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
|
|
inter_data.orig_seq_lens, inter_data.seq_lens,
|
|
inter_data.query_lens, inter_data.context_lens,
|
|
inter_data.curr_sliding_window_blocks):
|
|
self.context_lens.append(context_len)
|
|
|
|
if is_prompt:
|
|
self.num_prefills += 1
|
|
self.num_prefill_tokens += token_len
|
|
self.prefill_seq_lens.append(seq_len)
|
|
else:
|
|
self.num_decode_tokens += query_len
|
|
self.curr_seq_lens.append(curr_seq_len)
|
|
|
|
# Compute block table.
|
|
# TODO(sang): Combine chunked prefill and prefix caching by
|
|
# only allowing multiple of block_size chunk size.
|
|
# NOTE: This only works for oooooooxxx style attention.
|
|
block_table = []
|
|
if prefix_cache_hit:
|
|
# NOTE(woosuk): For flash-attn, the block table should
|
|
# include the entries for the incoming prefill tokens.
|
|
block_table = block_tables[seq_id]
|
|
elif ((chunked_prefill_enabled or not is_prompt)
|
|
and block_tables is not None):
|
|
if curr_sliding_window_block == 0:
|
|
block_table = block_tables[seq_id]
|
|
else:
|
|
block_table = block_tables[seq_id][
|
|
-curr_sliding_window_block:]
|
|
self.block_tables.append(block_table)
|
|
|
|
# Compute slot mapping.
|
|
is_profile_run = is_block_tables_empty(block_tables)
|
|
start_idx = compute_slot_mapping_start_idx(is_prompt, query_len,
|
|
context_len,
|
|
self.sliding_window)
|
|
compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
|
|
seq_len, context_len, start_idx,
|
|
self.block_size, inter_data.block_tables)
|
|
|
|
def _get_graph_runner_block_tables(
|
|
self, num_seqs: int,
|
|
block_tables: List[List[int]]) -> torch.Tensor:
|
|
# The shape of graph_block_tables is
|
|
# [max batch size, max context len // block size].
|
|
max_batch_size, max_blocks = self.runner.graph_block_tables.shape
|
|
assert max_batch_size >= num_seqs
|
|
|
|
graph_block_tables = self.runner.graph_block_tables[:num_seqs]
|
|
for i, block_table in enumerate(block_tables):
|
|
if block_table:
|
|
num_blocks = len(block_table)
|
|
if num_blocks <= max_blocks:
|
|
graph_block_tables[i, :num_blocks] = block_table
|
|
else:
|
|
# It may be possible to have more blocks allocated due
|
|
# to lookahead slots of multi-step, however, they are
|
|
# not used anyway, so can be safely ignored.
|
|
graph_block_tables[
|
|
i, :max_blocks] = block_table[:max_blocks]
|
|
|
|
return torch.from_numpy(graph_block_tables).to(
|
|
device=self.runner.device, non_blocking=True)
|
|
|
|
def build(self, seq_lens: List[int], query_lens: List[int],
|
|
cuda_graph_pad_size: int, batch_size: int):
|
|
"""Build attention metadata with on-device tensors.
|
|
|
|
Args:
|
|
seq_lens: The maybe padded sequence lengths of the input sequences.
|
|
query_lens: The query lengths of the input sequences.
|
|
cuda_graph_pad_size: The padding size for cuda graph.
|
|
-1 if cuda graph is not used.
|
|
batch_size: The maybe padded batch size.
|
|
"""
|
|
prefix_cache_hit = any([
|
|
inter_data.prefix_cache_hit
|
|
for inter_data in self.input_builder.inter_data_list
|
|
])
|
|
for inter_data in self.input_builder.inter_data_list:
|
|
self._add_seq_group(inter_data,
|
|
self.input_builder.chunked_prefill_enabled,
|
|
prefix_cache_hit)
|
|
|
|
device = self.runner.device
|
|
use_captured_graph = cuda_graph_pad_size != -1
|
|
|
|
max_query_len = max(query_lens)
|
|
decode_query_lens = query_lens[self.num_prefills:]
|
|
if len(decode_query_lens) > 0:
|
|
max_decode_query_len = max(decode_query_lens)
|
|
else:
|
|
max_decode_query_len = 1
|
|
max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
|
|
max_decode_seq_len = max(self.curr_seq_lens, default=0)
|
|
num_decode_tokens = self.num_decode_tokens
|
|
|
|
num_seqs = len(seq_lens)
|
|
if use_captured_graph:
|
|
self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
|
|
self.block_tables.extend([] * cuda_graph_pad_size)
|
|
num_decode_tokens = batch_size - self.num_prefill_tokens
|
|
block_tables = self._get_graph_runner_block_tables(
|
|
num_seqs, self.block_tables)
|
|
else:
|
|
block_tables = make_tensor_with_pad(
|
|
self.block_tables,
|
|
pad=0,
|
|
dtype=torch.int,
|
|
device=device,
|
|
)
|
|
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
|
|
|
|
assert device is not None
|
|
context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
|
|
device, self.runner.pin_memory)
|
|
seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
|
|
self.runner.pin_memory)
|
|
query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
|
|
self.runner.pin_memory)
|
|
slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
|
|
device, self.runner.pin_memory)
|
|
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
|
|
dtype=torch.int32,
|
|
device=device)
|
|
seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
|
|
dtype=torch.int32,
|
|
device=device)
|
|
torch.cumsum(seq_lens_tensor,
|
|
dim=0,
|
|
dtype=seq_start_loc.dtype,
|
|
out=seq_start_loc[1:])
|
|
torch.cumsum(query_lens_tensor,
|
|
dim=0,
|
|
dtype=query_start_loc.dtype,
|
|
out=query_start_loc[1:])
|
|
|
|
return FlashAttentionMetadata(
|
|
num_prefills=self.num_prefills,
|
|
slot_mapping=slot_mapping_tensor,
|
|
num_prefill_tokens=self.num_prefill_tokens,
|
|
num_decode_tokens=num_decode_tokens,
|
|
seq_lens=seq_lens,
|
|
seq_lens_tensor=seq_lens_tensor,
|
|
max_query_len=max_query_len,
|
|
max_decode_query_len=max_decode_query_len,
|
|
max_prefill_seq_len=max_prefill_seq_len,
|
|
max_decode_seq_len=max_decode_seq_len,
|
|
query_start_loc=query_start_loc,
|
|
seq_start_loc=seq_start_loc,
|
|
context_lens_tensor=context_lens_tensor,
|
|
block_tables=block_tables,
|
|
use_cuda_graph=use_captured_graph,
|
|
)
|
|
|
|
|
|
class FlashAttentionImpl(AttentionImpl):
|
|
"""
|
|
If the input tensors contain prompt tokens, the layout is as follows:
|
|
|<--------------- num_prefill_tokens ----------------->|
|
|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
|
|
|
|
Otherwise, the layout is as follows:
|
|
|<----------------- num_decode_tokens ------------------>|
|
|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
|
|
|
|
Generation tokens can contain padding when cuda-graph is used.
|
|
Currently, prompt tokens don't contain any padding.
|
|
|
|
The prompts might have different lengths, while the generation tokens
|
|
always have length 1.
|
|
|
|
If chunked prefill is enabled, prefill tokens and decode tokens can be
|
|
batched together in a flattened 1D query.
|
|
|
|
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|
|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
|
|
|
|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
|
|
padding between prefill and decode tokens.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[List[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[Dict[str, Any]] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
) -> None:
|
|
if blocksparse_params is not None:
|
|
raise ValueError(
|
|
"FlashAttention does not support block-sparse attention.")
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
self.sliding_window = ((sliding_window, sliding_window)
|
|
if sliding_window is not None else (-1, -1))
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
if logits_soft_cap is None:
|
|
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
|
|
logits_soft_cap = 0
|
|
self.logits_soft_cap = logits_soft_cap
|
|
|
|
assert self.num_heads % self.num_kv_heads == 0
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
|
|
if sliding_window is not None:
|
|
# NOTE(woosuk): flash-attn's sliding window does not work with
|
|
# paged KV cache.
|
|
raise ValueError(
|
|
"Sliding window is not supported in FlashAttention.")
|
|
|
|
support_head_sizes = FlashAttentionBackend.get_supported_head_sizes()
|
|
if head_size not in support_head_sizes:
|
|
raise ValueError(
|
|
f"Head size {head_size} is not supported by FlashAttention. "
|
|
f"Supported head sizes are: {support_head_sizes}.")
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: FlashAttentionMetadata,
|
|
k_scale: float = 1.0,
|
|
v_scale: float = 1.0,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with FlashAttention.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
|
NOTE: kv_cache will be an empty tensor with shape [0]
|
|
for profiling run.
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError("Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"FlashAttentionImpl")
|
|
|
|
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
|
|
assert k_scale == 1.0 and v_scale == 1.0, (
|
|
"key/v_scale is not supported in FlashAttention.")
|
|
|
|
output = torch.ops.vllm.unified_flash_attention(
|
|
query,
|
|
key,
|
|
value,
|
|
self.num_heads,
|
|
self.head_size,
|
|
self.num_kv_heads,
|
|
kv_cache,
|
|
self.kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
self.scale,
|
|
self.sliding_window,
|
|
self.alibi_slopes,
|
|
self.logits_soft_cap,
|
|
)
|
|
|
|
return output
|
|
|
|
|
|
@torch.library.custom_op("vllm::unified_flash_attention",
|
|
mutates_args=["kv_cache"])
|
|
def unified_flash_attention(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
num_heads: int,
|
|
head_size: int,
|
|
num_kv_heads: int,
|
|
kv_cache: torch.Tensor,
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
softmax_scale: float,
|
|
window_size: Optional[List[int]] = None,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
) -> torch.Tensor:
|
|
|
|
current_metadata = get_forward_context()
|
|
assert current_metadata is not None
|
|
assert isinstance(current_metadata, FlashAttentionMetadata)
|
|
attn_metadata: FlashAttentionMetadata = current_metadata
|
|
|
|
num_tokens, hidden_size = query.shape
|
|
# Reshape the query, key, and value tensors.
|
|
query = query.view(-1, num_heads, head_size)
|
|
key = key.view(-1, num_kv_heads, head_size)
|
|
value = value.view(-1, num_kv_heads, head_size)
|
|
|
|
if kv_cache.numel() > 0:
|
|
key_cache = kv_cache[0]
|
|
value_cache = kv_cache[1]
|
|
|
|
# Reshape the input keys and values and store them in the cache.
|
|
# If kv_cache is not provided, the new key and value tensors are
|
|
# not cached. This happens during the initial memory profiling run.
|
|
torch.ops._C_cache_ops.reshape_and_cache_flash(
|
|
key,
|
|
value,
|
|
kv_cache[0],
|
|
kv_cache[1],
|
|
attn_metadata.slot_mapping.flatten(),
|
|
kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
)
|
|
|
|
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
|
num_decode_tokens = attn_metadata.num_decode_tokens
|
|
assert key.shape[0] == num_prefill_tokens + num_decode_tokens, \
|
|
f"key : {key.shape} : #prefill tokens {num_prefill_tokens} : #decode tokens {num_decode_tokens}" # noqa
|
|
assert value.shape[0] == num_prefill_tokens + num_decode_tokens, \
|
|
f"value : {value.shape} : #prefill toks {num_prefill_tokens} : #decode toks {num_decode_tokens}" # noqa
|
|
|
|
# Query for decode. KV is not needed because it is already cached.
|
|
decode_query = query[num_prefill_tokens:]
|
|
# QKV for prefill.
|
|
query = query[:num_prefill_tokens]
|
|
key = key[:num_prefill_tokens]
|
|
value = value[:num_prefill_tokens]
|
|
|
|
assert query.shape[0] == num_prefill_tokens
|
|
assert decode_query.shape[0] == num_decode_tokens
|
|
|
|
prefill_output: Optional[torch.Tensor] = None
|
|
decode_output: Optional[torch.Tensor] = None
|
|
|
|
if prefill_meta := attn_metadata.prefill_metadata:
|
|
# Prompt run.
|
|
if (kv_cache.numel() == 0 or prefill_meta.block_tables is None
|
|
or prefill_meta.block_tables.numel() == 0):
|
|
# normal attention
|
|
# When block_tables are not filled, it means q and k are the
|
|
# prompt, and they have the same length.
|
|
prefill_output = flash_attn_varlen_func(
|
|
q=query,
|
|
k=key,
|
|
v=value,
|
|
cu_seqlens_q=prefill_meta.seq_start_loc,
|
|
cu_seqlens_k=prefill_meta.seq_start_loc,
|
|
max_seqlen_q=prefill_meta.max_prefill_seq_len,
|
|
max_seqlen_k=prefill_meta.max_prefill_seq_len,
|
|
softmax_scale=softmax_scale,
|
|
causal=True,
|
|
window_size=window_size,
|
|
alibi_slopes=alibi_slopes,
|
|
softcap=logits_soft_cap,
|
|
)
|
|
else:
|
|
# prefix-enabled attention
|
|
assert prefill_meta.seq_lens is not None
|
|
max_seq_len = max(prefill_meta.seq_lens)
|
|
prefill_output = flash_attn_varlen_func( # noqa
|
|
q=query,
|
|
k=key_cache,
|
|
v=value_cache,
|
|
cu_seqlens_q=prefill_meta.query_start_loc,
|
|
max_seqlen_q=prefill_meta.max_query_len,
|
|
cu_seqlens_k=prefill_meta.seq_start_loc,
|
|
max_seqlen_k=max_seq_len,
|
|
softmax_scale=softmax_scale,
|
|
causal=True,
|
|
alibi_slopes=alibi_slopes,
|
|
block_table=prefill_meta.block_tables,
|
|
softcap=logits_soft_cap,
|
|
)
|
|
|
|
if decode_meta := attn_metadata.decode_metadata:
|
|
# Decoding run.
|
|
# Use flash_attn_varlen_func kernel for speculative decoding
|
|
# because different queries might have different lengths.
|
|
assert decode_meta.max_decode_query_len is not None
|
|
if decode_meta.max_decode_query_len > 1:
|
|
decode_output = flash_attn_varlen_func(
|
|
q=decode_query,
|
|
k=key_cache,
|
|
v=value_cache,
|
|
cu_seqlens_q=decode_meta.query_start_loc,
|
|
max_seqlen_q=decode_meta.max_decode_query_len,
|
|
cu_seqlens_k=decode_meta.seq_start_loc,
|
|
max_seqlen_k=decode_meta.max_decode_seq_len,
|
|
softmax_scale=softmax_scale,
|
|
causal=True,
|
|
alibi_slopes=alibi_slopes,
|
|
softcap=logits_soft_cap,
|
|
block_table=decode_meta.block_tables,
|
|
)
|
|
else:
|
|
# Use flash_attn_with_kvcache for normal decoding.
|
|
decode_output = flash_attn_with_kvcache(
|
|
q=decode_query.unsqueeze(1),
|
|
k_cache=key_cache,
|
|
v_cache=value_cache,
|
|
block_table=decode_meta.block_tables,
|
|
cache_seqlens=decode_meta.seq_lens_tensor,
|
|
softmax_scale=softmax_scale,
|
|
causal=True,
|
|
alibi_slopes=alibi_slopes,
|
|
softcap=logits_soft_cap,
|
|
).squeeze(1)
|
|
|
|
if prefill_output is None:
|
|
assert decode_output is not None
|
|
return decode_output.view(num_decode_tokens, hidden_size)
|
|
if decode_output is None:
|
|
assert prefill_output is not None
|
|
return prefill_output.view(num_prefill_tokens, hidden_size)
|
|
|
|
# Chunked prefill does not work with speculative decoding.
|
|
# Therefore, the query length for decode should be 1 in chunked prefill.
|
|
assert decode_meta is not None
|
|
decode_output = decode_output.squeeze(1)
|
|
output = torch.cat([prefill_output, decode_output], dim=0)
|
|
return output.view(num_tokens, hidden_size)
|
|
|
|
|
|
@unified_flash_attention.register_fake
|
|
def _(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
num_heads: int,
|
|
head_size: int,
|
|
num_kv_heads: int,
|
|
kv_cache: torch.Tensor,
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
softmax_scale: float,
|
|
window_size: Optional[List[int]] = None,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
) -> torch.Tensor:
|
|
return torch.empty_like(query)
|