
Removing the block manager v1. This is the initial piece of prefix-caching-centric design. In order to achieve prefix-caching-centric design, we need to simplify the code path so that we only use v2 block manager (which has much higher performance on prefix caching).
681 lines
22 KiB
Python
681 lines
22 KiB
Python
import asyncio
|
|
import functools
|
|
import os
|
|
import signal
|
|
import subprocess
|
|
import sys
|
|
import time
|
|
import warnings
|
|
from contextlib import contextmanager
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, List, Literal, Optional, Union
|
|
|
|
import openai
|
|
import pytest
|
|
import requests
|
|
from openai.types.completion import Completion
|
|
from typing_extensions import ParamSpec, assert_never
|
|
|
|
import vllm.envs as envs
|
|
from tests.models.utils import TextTextLogprobs
|
|
from vllm.distributed import (ensure_model_parallel_initialized,
|
|
init_distributed_environment)
|
|
from vllm.engine.arg_utils import AsyncEngineArgs
|
|
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
|
from vllm.model_executor.model_loader.loader import get_model_loader
|
|
from vllm.platforms import current_platform
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
from vllm.utils import (FlexibleArgumentParser, GB_bytes,
|
|
cuda_device_count_stateless, get_open_port, is_hip)
|
|
|
|
if current_platform.is_rocm():
|
|
from amdsmi import (amdsmi_get_gpu_vram_usage,
|
|
amdsmi_get_processor_handles, amdsmi_init,
|
|
amdsmi_shut_down)
|
|
|
|
@contextmanager
|
|
def _nvml():
|
|
try:
|
|
amdsmi_init()
|
|
yield
|
|
finally:
|
|
amdsmi_shut_down()
|
|
elif current_platform.is_cuda():
|
|
from pynvml import (nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo,
|
|
nvmlInit, nvmlShutdown)
|
|
|
|
@contextmanager
|
|
def _nvml():
|
|
try:
|
|
nvmlInit()
|
|
yield
|
|
finally:
|
|
nvmlShutdown()
|
|
else:
|
|
|
|
@contextmanager
|
|
def _nvml():
|
|
yield
|
|
|
|
|
|
VLLM_PATH = Path(__file__).parent.parent
|
|
"""Path to root of the vLLM repository."""
|
|
|
|
|
|
class RemoteOpenAIServer:
|
|
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
|
|
|
|
def __init__(self,
|
|
model: str,
|
|
vllm_serve_args: List[str],
|
|
*,
|
|
env_dict: Optional[Dict[str, str]] = None,
|
|
auto_port: bool = True,
|
|
max_wait_seconds: Optional[float] = None) -> None:
|
|
if auto_port:
|
|
if "-p" in vllm_serve_args or "--port" in vllm_serve_args:
|
|
raise ValueError("You have manually specified the port "
|
|
"when `auto_port=True`.")
|
|
|
|
# Don't mutate the input args
|
|
vllm_serve_args = vllm_serve_args + [
|
|
"--port", str(get_open_port())
|
|
]
|
|
|
|
parser = FlexibleArgumentParser(
|
|
description="vLLM's remote OpenAI server.")
|
|
parser = make_arg_parser(parser)
|
|
args = parser.parse_args(["--model", model, *vllm_serve_args])
|
|
self.host = str(args.host or 'localhost')
|
|
self.port = int(args.port)
|
|
|
|
# download the model before starting the server to avoid timeout
|
|
is_local = os.path.isdir(model)
|
|
if not is_local:
|
|
engine_args = AsyncEngineArgs.from_cli_args(args)
|
|
model_config = engine_args.create_model_config()
|
|
load_config = engine_args.create_load_config()
|
|
|
|
model_loader = get_model_loader(load_config)
|
|
model_loader.download_model(model_config)
|
|
|
|
env = os.environ.copy()
|
|
# the current process might initialize cuda,
|
|
# to be safe, we should use spawn method
|
|
env['VLLM_WORKER_MULTIPROC_METHOD'] = 'spawn'
|
|
if env_dict is not None:
|
|
env.update(env_dict)
|
|
self.proc = subprocess.Popen(
|
|
["vllm", "serve", model, *vllm_serve_args],
|
|
env=env,
|
|
stdout=sys.stdout,
|
|
stderr=sys.stderr,
|
|
)
|
|
max_wait_seconds = max_wait_seconds or 240
|
|
self._wait_for_server(url=self.url_for("health"),
|
|
timeout=max_wait_seconds)
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
self.proc.terminate()
|
|
try:
|
|
self.proc.wait(8)
|
|
except subprocess.TimeoutExpired:
|
|
# force kill if needed
|
|
self.proc.kill()
|
|
|
|
def _wait_for_server(self, *, url: str, timeout: float):
|
|
# run health check
|
|
start = time.time()
|
|
while True:
|
|
try:
|
|
if requests.get(url).status_code == 200:
|
|
break
|
|
except Exception as err:
|
|
result = self.proc.poll()
|
|
if result is not None and result != 0:
|
|
raise RuntimeError("Server exited unexpectedly.") from err
|
|
|
|
time.sleep(0.5)
|
|
if time.time() - start > timeout:
|
|
raise RuntimeError(
|
|
"Server failed to start in time.") from err
|
|
|
|
@property
|
|
def url_root(self) -> str:
|
|
return f"http://{self.host}:{self.port}"
|
|
|
|
def url_for(self, *parts: str) -> str:
|
|
return self.url_root + "/" + "/".join(parts)
|
|
|
|
def get_client(self):
|
|
return openai.OpenAI(
|
|
base_url=self.url_for("v1"),
|
|
api_key=self.DUMMY_API_KEY,
|
|
)
|
|
|
|
def get_async_client(self):
|
|
return openai.AsyncOpenAI(
|
|
base_url=self.url_for("v1"),
|
|
api_key=self.DUMMY_API_KEY,
|
|
max_retries=0,
|
|
)
|
|
|
|
|
|
def _test_completion(
|
|
client: openai.OpenAI,
|
|
model: str,
|
|
prompt: str,
|
|
token_ids: List[int],
|
|
):
|
|
results = []
|
|
|
|
# test with text prompt
|
|
completion = client.completions.create(model=model,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
temperature=0.0)
|
|
|
|
results.append({
|
|
"test": "single_completion",
|
|
"text": completion.choices[0].text,
|
|
"finish_reason": completion.choices[0].finish_reason,
|
|
"usage": completion.usage,
|
|
})
|
|
|
|
# test using token IDs
|
|
completion = client.completions.create(
|
|
model=model,
|
|
prompt=token_ids,
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
)
|
|
|
|
results.append({
|
|
"test": "token_ids",
|
|
"text": completion.choices[0].text,
|
|
"finish_reason": completion.choices[0].finish_reason,
|
|
"usage": completion.usage,
|
|
})
|
|
|
|
# test seeded random sampling
|
|
completion = client.completions.create(model=model,
|
|
prompt=prompt,
|
|
max_tokens=5,
|
|
seed=33,
|
|
temperature=1.0)
|
|
|
|
results.append({
|
|
"test": "seeded_sampling",
|
|
"text": completion.choices[0].text,
|
|
"finish_reason": completion.choices[0].finish_reason,
|
|
"usage": completion.usage,
|
|
})
|
|
|
|
# test seeded random sampling with multiple prompts
|
|
completion = client.completions.create(model=model,
|
|
prompt=[prompt, prompt],
|
|
max_tokens=5,
|
|
seed=33,
|
|
temperature=1.0)
|
|
|
|
results.append({
|
|
"test":
|
|
"seeded_sampling",
|
|
"text": [choice.text for choice in completion.choices],
|
|
"finish_reason":
|
|
[choice.finish_reason for choice in completion.choices],
|
|
"usage":
|
|
completion.usage,
|
|
})
|
|
|
|
# test simple list
|
|
batch = client.completions.create(
|
|
model=model,
|
|
prompt=[prompt, prompt],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
)
|
|
|
|
results.append({
|
|
"test": "simple_list",
|
|
"text0": batch.choices[0].text,
|
|
"text1": batch.choices[1].text,
|
|
})
|
|
|
|
# test streaming
|
|
batch = client.completions.create(
|
|
model=model,
|
|
prompt=[prompt, prompt],
|
|
max_tokens=5,
|
|
temperature=0.0,
|
|
stream=True,
|
|
)
|
|
|
|
texts = [""] * 2
|
|
for chunk in batch:
|
|
assert len(chunk.choices) == 1
|
|
choice = chunk.choices[0]
|
|
texts[choice.index] += choice.text
|
|
|
|
results.append({
|
|
"test": "streaming",
|
|
"texts": texts,
|
|
})
|
|
|
|
return results
|
|
|
|
|
|
def _test_embeddings(
|
|
client: openai.OpenAI,
|
|
model: str,
|
|
text: str,
|
|
):
|
|
results = []
|
|
|
|
# test with text input
|
|
embeddings = client.embeddings.create(
|
|
model=model,
|
|
input=text,
|
|
encoding_format="float",
|
|
)
|
|
|
|
results.append({
|
|
"test": "single_embedding",
|
|
"embedding": embeddings.data[0].embedding,
|
|
"usage": embeddings.usage,
|
|
})
|
|
|
|
return results
|
|
|
|
|
|
def compare_two_settings(model: str,
|
|
arg1: List[str],
|
|
arg2: List[str],
|
|
env1: Optional[Dict[str, str]] = None,
|
|
env2: Optional[Dict[str, str]] = None,
|
|
*,
|
|
method: Literal["generate", "encode"] = "generate",
|
|
max_wait_seconds: Optional[float] = None) -> None:
|
|
"""
|
|
Launch API server with two different sets of arguments/environments
|
|
and compare the results of the API calls.
|
|
|
|
Args:
|
|
model: The model to test.
|
|
arg1: The first set of arguments to pass to the API server.
|
|
arg2: The second set of arguments to pass to the API server.
|
|
env1: The first set of environment variables to pass to the API server.
|
|
env2: The second set of environment variables to pass to the API server.
|
|
"""
|
|
|
|
compare_all_settings(
|
|
model,
|
|
[arg1, arg2],
|
|
[env1, env2],
|
|
method=method,
|
|
max_wait_seconds=max_wait_seconds,
|
|
)
|
|
|
|
|
|
def compare_all_settings(model: str,
|
|
all_args: List[List[str]],
|
|
all_envs: List[Optional[Dict[str, str]]],
|
|
*,
|
|
method: Literal["generate", "encode"] = "generate",
|
|
max_wait_seconds: Optional[float] = None) -> None:
|
|
"""
|
|
Launch API server with several different sets of arguments/environments
|
|
and compare the results of the API calls with the first set of arguments.
|
|
Args:
|
|
model: The model to test.
|
|
all_args: A list of argument lists to pass to the API server.
|
|
all_envs: A list of environment dictionaries to pass to the API server.
|
|
"""
|
|
|
|
trust_remote_code = False
|
|
for args in all_args:
|
|
if "--trust-remote-code" in args:
|
|
trust_remote_code = True
|
|
break
|
|
|
|
tokenizer_mode = "auto"
|
|
for args in all_args:
|
|
if "--tokenizer-mode" in args:
|
|
tokenizer_mode = args[args.index("--tokenizer-mode") + 1]
|
|
break
|
|
|
|
tokenizer = get_tokenizer(
|
|
model,
|
|
trust_remote_code=trust_remote_code,
|
|
tokenizer_mode=tokenizer_mode,
|
|
)
|
|
|
|
can_force_load_format = True
|
|
|
|
for args in all_args:
|
|
if "--load-format" in args:
|
|
can_force_load_format = False
|
|
break
|
|
|
|
prompt = "Hello, my name is"
|
|
token_ids = tokenizer(prompt).input_ids
|
|
ref_results: List = []
|
|
for i, (args, env) in enumerate(zip(all_args, all_envs)):
|
|
if can_force_load_format:
|
|
# we are comparing the results and
|
|
# usually we don't need real weights.
|
|
# we force to use dummy weights by default,
|
|
# and it should work for most of the cases.
|
|
# if not, we can use VLLM_TEST_FORCE_LOAD_FORMAT
|
|
# environment variable to force the load format,
|
|
# e.g. in quantization tests.
|
|
args = args + ["--load-format", envs.VLLM_TEST_FORCE_LOAD_FORMAT]
|
|
compare_results: List = []
|
|
results = ref_results if i == 0 else compare_results
|
|
with RemoteOpenAIServer(model,
|
|
args,
|
|
env_dict=env,
|
|
max_wait_seconds=max_wait_seconds) as server:
|
|
client = server.get_client()
|
|
|
|
# test models list
|
|
models = client.models.list()
|
|
models = models.data
|
|
served_model = models[0]
|
|
results.append({
|
|
"test": "models_list",
|
|
"id": served_model.id,
|
|
"root": served_model.root,
|
|
})
|
|
|
|
if method == "generate":
|
|
results += _test_completion(client, model, prompt, token_ids)
|
|
elif method == "encode":
|
|
results += _test_embeddings(client, model, prompt)
|
|
else:
|
|
assert_never(method)
|
|
|
|
if i > 0:
|
|
# if any setting fails, raise an error early
|
|
ref_args = all_args[0]
|
|
ref_envs = all_envs[0]
|
|
compare_args = all_args[i]
|
|
compare_envs = all_envs[i]
|
|
for ref_result, compare_result in zip(ref_results,
|
|
compare_results):
|
|
assert ref_result == compare_result, (
|
|
f"Results for {model=} are not the same.\n"
|
|
f"{ref_args=} {ref_envs=}\n"
|
|
f"{compare_args=} {compare_envs=}\n"
|
|
f"{ref_result=}\n"
|
|
f"{compare_result=}\n")
|
|
|
|
|
|
def init_test_distributed_environment(
|
|
tp_size: int,
|
|
pp_size: int,
|
|
rank: int,
|
|
distributed_init_port: str,
|
|
local_rank: int = -1,
|
|
) -> None:
|
|
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
|
|
init_distributed_environment(
|
|
world_size=pp_size * tp_size,
|
|
rank=rank,
|
|
distributed_init_method=distributed_init_method,
|
|
local_rank=local_rank)
|
|
ensure_model_parallel_initialized(tp_size, pp_size)
|
|
|
|
|
|
def multi_process_parallel(
|
|
tp_size: int,
|
|
pp_size: int,
|
|
test_target: Any,
|
|
) -> None:
|
|
import ray
|
|
|
|
# Using ray helps debugging the error when it failed
|
|
# as compared to multiprocessing.
|
|
# NOTE: We need to set working_dir for distributed tests,
|
|
# otherwise we may get import errors on ray workers
|
|
ray.init(runtime_env={"working_dir": VLLM_PATH})
|
|
|
|
distributed_init_port = get_open_port()
|
|
refs = []
|
|
for rank in range(tp_size * pp_size):
|
|
refs.append(
|
|
test_target.remote(tp_size, pp_size, rank, distributed_init_port))
|
|
ray.get(refs)
|
|
|
|
ray.shutdown()
|
|
|
|
|
|
@contextmanager
|
|
def error_on_warning():
|
|
"""
|
|
Within the scope of this context manager, tests will fail if any warning
|
|
is emitted.
|
|
"""
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error")
|
|
|
|
yield
|
|
|
|
|
|
def get_physical_device_indices(devices):
|
|
visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES")
|
|
if visible_devices is None:
|
|
return devices
|
|
|
|
visible_indices = [int(x) for x in visible_devices.split(",")]
|
|
index_mapping = {i: physical for i, physical in enumerate(visible_indices)}
|
|
return [index_mapping[i] for i in devices if i in index_mapping]
|
|
|
|
|
|
@_nvml()
|
|
def wait_for_gpu_memory_to_clear(devices: List[int],
|
|
threshold_bytes: int,
|
|
timeout_s: float = 120) -> None:
|
|
# Use nvml instead of pytorch to reduce measurement error from torch cuda
|
|
# context.
|
|
devices = get_physical_device_indices(devices)
|
|
start_time = time.time()
|
|
while True:
|
|
output: Dict[int, str] = {}
|
|
output_raw: Dict[int, float] = {}
|
|
for device in devices:
|
|
if is_hip():
|
|
dev_handle = amdsmi_get_processor_handles()[device]
|
|
mem_info = amdsmi_get_gpu_vram_usage(dev_handle)
|
|
gb_used = mem_info["vram_used"] / 2**10
|
|
else:
|
|
dev_handle = nvmlDeviceGetHandleByIndex(device)
|
|
mem_info = nvmlDeviceGetMemoryInfo(dev_handle)
|
|
gb_used = mem_info.used / 2**30
|
|
output_raw[device] = gb_used
|
|
output[device] = f'{gb_used:.02f}'
|
|
|
|
print('gpu memory used (GB): ', end='')
|
|
for k, v in output.items():
|
|
print(f'{k}={v}; ', end='')
|
|
print('')
|
|
|
|
dur_s = time.time() - start_time
|
|
if all(v <= (threshold_bytes / 2**30) for v in output_raw.values()):
|
|
print(f'Done waiting for free GPU memory on devices {devices=} '
|
|
f'({threshold_bytes/2**30=}) {dur_s=:.02f}')
|
|
break
|
|
|
|
if dur_s >= timeout_s:
|
|
raise ValueError(f'Memory of devices {devices=} not free after '
|
|
f'{dur_s=:.02f} ({threshold_bytes/2**30=})')
|
|
|
|
time.sleep(5)
|
|
|
|
|
|
_P = ParamSpec("_P")
|
|
|
|
|
|
def fork_new_process_for_each_test(
|
|
f: Callable[_P, None]) -> Callable[_P, None]:
|
|
"""Decorator to fork a new process for each test function.
|
|
See https://github.com/vllm-project/vllm/issues/7053 for more details.
|
|
"""
|
|
|
|
@functools.wraps(f)
|
|
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> None:
|
|
# Make the process the leader of its own process group
|
|
# to avoid sending SIGTERM to the parent process
|
|
os.setpgrp()
|
|
from _pytest.outcomes import Skipped
|
|
pid = os.fork()
|
|
print(f"Fork a new process to run a test {pid}")
|
|
if pid == 0:
|
|
try:
|
|
f(*args, **kwargs)
|
|
except Skipped as e:
|
|
# convert Skipped to exit code 0
|
|
print(str(e))
|
|
os._exit(0)
|
|
except Exception:
|
|
import traceback
|
|
traceback.print_exc()
|
|
os._exit(1)
|
|
else:
|
|
os._exit(0)
|
|
else:
|
|
pgid = os.getpgid(pid)
|
|
_pid, _exitcode = os.waitpid(pid, 0)
|
|
# ignore SIGTERM signal itself
|
|
old_signal_handler = signal.signal(signal.SIGTERM, signal.SIG_IGN)
|
|
# kill all child processes
|
|
os.killpg(pgid, signal.SIGTERM)
|
|
# restore the signal handler
|
|
signal.signal(signal.SIGTERM, old_signal_handler)
|
|
assert _exitcode == 0, (f"function {f} failed when called with"
|
|
f" args {args} and kwargs {kwargs}")
|
|
|
|
return wrapper
|
|
|
|
|
|
def large_gpu_test(*, min_gb: int):
|
|
"""
|
|
Decorate a test to be skipped if no GPU is available or it does not have
|
|
sufficient memory.
|
|
|
|
Currently, the CI machine uses L4 GPU which has 24 GB VRAM.
|
|
"""
|
|
try:
|
|
if current_platform.is_cpu():
|
|
memory_gb = 0
|
|
else:
|
|
memory_gb = current_platform.get_device_total_memory() / GB_bytes
|
|
except Exception as e:
|
|
warnings.warn(
|
|
f"An error occurred when finding the available memory: {e}",
|
|
stacklevel=2,
|
|
)
|
|
|
|
memory_gb = 0
|
|
|
|
test_skipif = pytest.mark.skipif(
|
|
memory_gb < min_gb,
|
|
reason=f"Need at least {memory_gb}GB GPU memory to run the test.",
|
|
)
|
|
|
|
def wrapper(f: Callable[_P, None]) -> Callable[_P, None]:
|
|
return test_skipif(fork_new_process_for_each_test(f))
|
|
|
|
return wrapper
|
|
|
|
|
|
def multi_gpu_test(*, num_gpus: int):
|
|
"""
|
|
Decorate a test to be run only when multiple GPUs are available.
|
|
"""
|
|
test_selector = getattr(pytest.mark, f"distributed_{num_gpus}_gpus")
|
|
test_skipif = pytest.mark.skipif(
|
|
cuda_device_count_stateless() < num_gpus,
|
|
reason=f"Need at least {num_gpus} GPUs to run the test.",
|
|
)
|
|
|
|
def wrapper(f: Callable[_P, None]) -> Callable[_P, None]:
|
|
return test_selector(test_skipif(fork_new_process_for_each_test(f)))
|
|
|
|
return wrapper
|
|
|
|
|
|
async def completions_with_server_args(
|
|
prompts: List[str],
|
|
model_name: str,
|
|
server_cli_args: List[str],
|
|
num_logprobs: Optional[int],
|
|
max_wait_seconds: int = 240,
|
|
max_tokens: Union[int, list] = 5,
|
|
) -> List[Completion]:
|
|
'''Construct a remote OpenAI server, obtain an async client to the
|
|
server & invoke the completions API to obtain completions.
|
|
|
|
Args:
|
|
prompts: test prompts
|
|
model_name: model to spin up on the vLLM server
|
|
server_cli_args: CLI args for starting the server
|
|
num_logprobs: Number of logprobs to report (or `None`)
|
|
max_wait_seconds: timeout interval for bringing up server.
|
|
Default: 240sec
|
|
max_tokens: max_tokens value for each of the given input prompts.
|
|
if only one max_token value is given, the same value is used
|
|
for all the prompts.
|
|
|
|
Returns:
|
|
OpenAI Completion instance
|
|
'''
|
|
|
|
if isinstance(max_tokens, int):
|
|
max_tokens = [max_tokens] * len(prompts)
|
|
|
|
assert len(max_tokens) == len(prompts)
|
|
|
|
outputs = None
|
|
max_wait_seconds = 240 * 3 # 240 is default
|
|
with RemoteOpenAIServer(model_name,
|
|
server_cli_args,
|
|
max_wait_seconds=max_wait_seconds) as server:
|
|
client = server.get_async_client()
|
|
outputs = [ client.completions.create(model=model_name,
|
|
prompt=[p],
|
|
temperature=0,
|
|
stream=False,
|
|
max_tokens=max_tok,
|
|
logprobs=num_logprobs) \
|
|
for p, max_tok in zip(prompts, max_tokens) ]
|
|
outputs = await asyncio.gather(*outputs)
|
|
|
|
assert outputs is not None, "Completion API call failed."
|
|
|
|
return outputs
|
|
|
|
|
|
def get_client_text_generations(completions: List[Completion]) -> List[str]:
|
|
'''Extract generated tokens from the output of a
|
|
request made to an Open-AI-protocol completions endpoint.
|
|
'''
|
|
assert all([len(x.choices) == 1 for x in completions])
|
|
return [x.choices[0].text for x in completions]
|
|
|
|
|
|
def get_client_text_logprob_generations(
|
|
completions: List[Completion]) -> List[TextTextLogprobs]:
|
|
'''Operates on the output of a request made to an Open-AI-protocol
|
|
completions endpoint; obtains top-rank logprobs for each token in
|
|
each :class:`SequenceGroup`
|
|
'''
|
|
text_generations = get_client_text_generations(completions)
|
|
text = ''.join(text_generations)
|
|
return [(text_generations, text,
|
|
(None if x.logprobs is None else x.logprobs.top_logprobs))
|
|
for completion in completions for x in completion.choices]
|