vllm/tests/core/block/test_block_manager.py
Kuntai Du 81ede99ca4
[Core] Deprecating block manager v1 and make block manager v2 default (#8704)
Removing the block manager v1. This is the initial piece of prefix-caching-centric design. In order to achieve prefix-caching-centric design, we need to simplify the code path so that we only use v2 block manager (which has much higher performance on prefix caching).
2024-10-17 11:38:15 -05:00

492 lines
19 KiB
Python

import pytest
from vllm.core.block.utils import (STR_NOT_IMPL_ENC_DEC_PREFIX_CACHE,
STR_NOT_IMPL_ENC_DEC_SWA)
from vllm.core.block_manager import SelfAttnBlockSpaceManager
from vllm.core.interfaces import AllocStatus
from vllm.sequence import Logprob, SequenceStatus
from vllm.utils import chunk_list
from ..utils import (create_dummy_prompt, create_seq_group,
create_seq_group_encoder_decoder)
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("num_gpu_blocks", [8, 40, 80])
@pytest.mark.parametrize("num_seqs_per_group", [1, 4])
@pytest.mark.parametrize("watermark", [0.0, 0.5])
def test_can_allocate_seq_group(block_size: int, num_seqs_per_group: int,
num_gpu_blocks: int, watermark: float):
block_manager = SelfAttnBlockSpaceManager(
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=1024,
watermark=watermark,
)
num_watermark_blocks = int(watermark * num_gpu_blocks)
num_output_blocks_per_seq = 1
# NOTE: This should be num_output_blocks_per_seq * num_seqs_per_group, but
# the current implementation assumes all seqs are new prompts / don't have
# different output lens.
num_output_blocks = num_output_blocks_per_seq
for num_prompt_blocks in range(1, num_gpu_blocks - num_output_blocks):
seq_group = create_seq_group(
seq_prompt_len=block_size * num_prompt_blocks,
seq_output_lens=[
block_size * num_output_blocks_per_seq
for _ in range(num_seqs_per_group)
],
)
assert num_prompt_blocks + num_output_blocks <= num_gpu_blocks
can_allocate_result = block_manager.can_allocate(seq_group)
num_required_blocks = num_prompt_blocks + num_output_blocks
if num_gpu_blocks - num_required_blocks < num_watermark_blocks:
assert can_allocate_result == AllocStatus.NEVER
elif num_gpu_blocks >= num_required_blocks:
assert can_allocate_result == AllocStatus.OK
else:
assert can_allocate_result == AllocStatus.LATER
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("num_gpu_blocks", [16, 80, 160])
@pytest.mark.parametrize("num_seqs_per_group", [1, 4])
@pytest.mark.parametrize("watermark", [0.0, 0.5])
def test_can_allocate_seq_group_encoder_decoder(block_size: int,
num_seqs_per_group: int,
num_gpu_blocks: int,
watermark: float):
block_manager = SelfAttnBlockSpaceManager(
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=1024,
watermark=watermark,
)
num_watermark_blocks = int(watermark * num_gpu_blocks)
num_output_blocks_per_seq = 1
# NOTE: This should be num_output_blocks_per_seq * num_seqs_per_group, but
# the current implementation assumes all seqs are new prompts / don't have
# different output lens.
num_output_blocks = num_output_blocks_per_seq
for bdx, num_prompt_blocks in enumerate(
range(1, num_gpu_blocks - num_output_blocks)):
num_cross_blocks_per_seq = num_prompt_blocks
seq_group = create_seq_group_encoder_decoder(
seq_prompt_len=block_size * num_prompt_blocks,
seq_output_lens=[
block_size * num_output_blocks_per_seq
for _ in range(num_seqs_per_group)
],
request_id=str(bdx))
assert num_prompt_blocks + num_output_blocks <= num_gpu_blocks
can_allocate_result = block_manager.can_allocate(seq_group)
num_required_blocks = num_prompt_blocks + \
num_output_blocks + \
num_cross_blocks_per_seq
if num_gpu_blocks - num_required_blocks < num_watermark_blocks:
assert can_allocate_result == AllocStatus.NEVER
elif num_gpu_blocks >= num_required_blocks:
assert can_allocate_result == AllocStatus.OK
else:
assert can_allocate_result == AllocStatus.LATER
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("num_gpu_blocks", [16])
@pytest.mark.parametrize("num_seqs_per_group", [1])
@pytest.mark.parametrize("watermark", [0.0, 0.5])
def test_can_allocate_encoder_decoder_fails_with_swa(block_size: int,
num_seqs_per_group: int,
num_gpu_blocks: int,
watermark: float):
'''
SWA short for Sliding Window Attention.
At time of writing block manager does not support SWA.
However even when SWA is implemented for block manager,
there will still most likely be a separate workstream required
to enable SWA for encoder/decoder models.
Therefore this test enforces that one of the following cases
hold true:
1. Block manager does not support SWA at all (true at time of writing)
2. Block manager fails with NotImplementError when SWA is enabled
AND a SequenceGroup with an encoder sequence (i.e. in support of an
encoder/decoder model) is passed into can_allocate() as an argument
The setup for this test is stripped down version of
test_can_allocate_seq_group_encoder_decoder()
'''
with pytest.raises((NotImplementedError, AssertionError)) as exc_info:
block_manager = SelfAttnBlockSpaceManager(
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=1024,
watermark=watermark,
sliding_window=5 # SWA
)
num_output_blocks_per_seq = 1
num_prompt_blocks = 1
num_output_blocks = num_output_blocks_per_seq
seq_group = create_seq_group_encoder_decoder(
seq_prompt_len=block_size * num_prompt_blocks,
seq_output_lens=[
block_size * num_output_blocks_per_seq
for _ in range(num_seqs_per_group)
],
request_id="0")
assert num_prompt_blocks + num_output_blocks <= num_gpu_blocks
block_manager.can_allocate(seq_group)
# Assert that either
# 1. Block manager constructor fails with assertion that sliding window
# is not yet supported (most likely near-term outcome at time of
# writing), or
# 2. can_allocate() fails with NotImplementedError due to combination of
# encoder/decoder and sliding window attention
if isinstance(exc_info.value, NotImplementedError):
assert str(exc_info.value) == STR_NOT_IMPL_ENC_DEC_SWA
elif isinstance(exc_info.value, AssertionError):
assert str(exc_info.value) == "Sliding window not yet supported"
@pytest.mark.parametrize("block_size", [16])
@pytest.mark.parametrize("num_gpu_blocks", [16])
@pytest.mark.parametrize("num_seqs_per_group", [1])
@pytest.mark.parametrize("watermark", [0.0, 0.5])
def test_can_allocate_encoder_decoder_fails_with_prefix_cache(
block_size: int, num_seqs_per_group: int, num_gpu_blocks: int,
watermark: float):
block_manager = SelfAttnBlockSpaceManager(
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=1024,
watermark=watermark,
enable_caching=True # Prefix cache
)
num_output_blocks_per_seq = 1
num_prompt_blocks = 1
num_output_blocks = num_output_blocks_per_seq
seq_group = create_seq_group_encoder_decoder(
seq_prompt_len=block_size * num_prompt_blocks,
seq_output_lens=[
block_size * num_output_blocks_per_seq
for _ in range(num_seqs_per_group)
],
request_id="0")
assert num_prompt_blocks + num_output_blocks <= num_gpu_blocks
# Assert that either can_allocate() fails with NotImplementedError
# due to combination of encoder/decoder and prefix cache
with pytest.raises(NotImplementedError) as exc_info:
block_manager.can_allocate(seq_group)
assert str(exc_info.value) == STR_NOT_IMPL_ENC_DEC_PREFIX_CACHE
@pytest.mark.parametrize("block_size", [1, 8])
@pytest.mark.parametrize("prompt_len", [1, 7, 8])
@pytest.mark.parametrize("num_slots_to_append", [1, 8, 129])
@pytest.mark.parametrize("num_lookahead_slots", [0, 10])
def test_append_slots(block_size, prompt_len, num_slots_to_append,
num_lookahead_slots):
"""Verify append_slots consumes the correct number of blocks from the block
table.
"""
num_gpu_blocks = 1024
watermark = 0.1
block_manager = SelfAttnBlockSpaceManager(
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=0,
watermark=watermark,
)
seq_group = create_seq_group(
seq_prompt_len=prompt_len,
seq_output_lens=[0],
)
# Allocate seq
assert block_manager.can_allocate(seq_group)
block_manager.allocate(seq_group)
# Seq seq to RUNNING
seq = seq_group.get_seqs()[0]
seq.status = SequenceStatus.RUNNING
# Append tokens to the sequeqnce
for token_id in range(num_slots_to_append):
seq.append_token_id(token_id, {token_id: Logprob(0.0)})
# Append slots for new tokens and lookahead slots.
free_blocks_before_append = block_manager.get_num_free_gpu_blocks()
block_manager.append_slots(seq, num_lookahead_slots)
num_consumed_blocks = (free_blocks_before_append -
block_manager.get_num_free_gpu_blocks())
# Expect consumed blocks to be new blocks required to support the new slots.
expected_consumed_blocks = len(
list(
chunk_list(
list(
range(prompt_len + num_slots_to_append +
num_lookahead_slots)),
block_size))) - len(
list(chunk_list(list(range(prompt_len)), block_size)))
assert num_consumed_blocks == expected_consumed_blocks
@pytest.mark.parametrize("block_size", [8])
@pytest.mark.parametrize("num_cpu_blocks", [4])
@pytest.mark.parametrize("num_gpu_blocks", [4])
@pytest.mark.parametrize("num_lookahead_slots", [0, 2, 10])
@pytest.mark.parametrize("enable_caching", [False, True])
def test_swap(block_size, num_cpu_blocks, num_gpu_blocks, num_lookahead_slots,
enable_caching):
"""Verify blocks number on src/desc device is correct after swapping in/out
sequence group (not missing or extra blocks).
"""
block_manager = SelfAttnBlockSpaceManager(block_size,
num_cpu_blocks,
num_gpu_blocks,
watermark=0,
enable_caching=enable_caching)
prompt, seq_group = create_dummy_prompt("1", prompt_length=block_size - 1)
prompt.status = SequenceStatus.WAITING
block_manager.allocate(seq_group)
# Emulate a forward pass by appending a single token.
# The block manager then knows how many unprocessed
# tokens will be written in the next forward pass.
token_id = 0
prompt.status = SequenceStatus.RUNNING
prompt.append_token_id(token_id, {token_id: Logprob(0.0)})
# Swap seq group from GPU -> CPU.
gpu_blocks = block_manager.get_block_table(prompt)
assert block_manager.can_swap_out(seq_group)
before_cpu_blocks = block_manager.get_num_free_cpu_blocks()
before_gpu_blocks = block_manager.get_num_free_gpu_blocks()
mapping = block_manager.swap_out(seq_group)
mapping_keys = [key for key, _ in mapping]
assert mapping_keys == gpu_blocks
after_cpu_blocks = block_manager.get_num_free_cpu_blocks()
after_gpu_blocks = block_manager.get_num_free_gpu_blocks()
assert before_cpu_blocks == after_cpu_blocks + len(gpu_blocks)
assert before_gpu_blocks + len(gpu_blocks) == after_gpu_blocks
prompt.status = SequenceStatus.SWAPPED
# Swap seq group from CPU -> GPU.
assert block_manager.can_swap_in(seq_group, num_lookahead_slots)
before_cpu_blocks = block_manager.get_num_free_cpu_blocks()
before_gpu_blocks = block_manager.get_num_free_gpu_blocks()
mapping = block_manager.swap_in(seq_group)
cpu_blocks = block_manager.get_block_table(prompt)
mapping_keys = [key for key, _ in mapping]
assert mapping_keys == [cpu_blocks[0]]
after_cpu_blocks = block_manager.get_num_free_cpu_blocks()
after_gpu_blocks = block_manager.get_num_free_gpu_blocks()
assert before_gpu_blocks == after_gpu_blocks + len(cpu_blocks)
@pytest.mark.parametrize("block_size", [8])
@pytest.mark.parametrize("num_gpu_blocks", [4])
@pytest.mark.parametrize("num_lookahead_slots", [3, 8, 10])
@pytest.mark.parametrize("enable_caching", [True, False])
def test_can_swap(block_size, num_gpu_blocks, num_lookahead_slots,
enable_caching):
""" Verify the block manager can correctly determine if a sequence group
can be swapped in/out.
"""
num_cpu_blocks = num_gpu_blocks
block_manager = SelfAttnBlockSpaceManager(block_size,
num_cpu_blocks,
num_gpu_blocks,
watermark=0,
enable_caching=enable_caching)
prompt, seq_group = create_dummy_prompt(
"1", prompt_length=(num_gpu_blocks - 1) * block_size - 1)
prompt.status = SequenceStatus.WAITING
block_manager.allocate(seq_group)
prompt.status = SequenceStatus.RUNNING
# Swap seq group from GPU -> CPU.
gpu_blocks = block_manager.get_block_table(prompt)
assert block_manager.can_swap_out(seq_group)
before_cpu_blocks = block_manager.get_num_free_cpu_blocks()
before_gpu_blocks = block_manager.get_num_free_gpu_blocks()
mapping = block_manager.swap_out(seq_group)
mapping_keys = [key for key, _ in mapping]
assert mapping_keys == gpu_blocks
after_cpu_blocks = block_manager.get_num_free_cpu_blocks()
after_gpu_blocks = block_manager.get_num_free_gpu_blocks()
assert before_cpu_blocks == after_cpu_blocks + len(gpu_blocks)
assert before_gpu_blocks + len(gpu_blocks) == after_gpu_blocks
prompt.status = SequenceStatus.SWAPPED
# At this moment, we still have enough free blocks to swap in the seq group.
if num_lookahead_slots <= block_size:
assert block_manager.can_swap_in(seq_group,
num_lookahead_slots) == AllocStatus.OK
else:
assert block_manager.can_swap_in(
seq_group, num_lookahead_slots) == AllocStatus.NEVER
# During Swapped out, 2 cached blocks were evicted from the GPU,
# so the prompt1 can't be swapped in
prompt2_len = 2 * block_size - 1
prompt2, seq_group2 = create_dummy_prompt(
"2",
prompt_length=prompt2_len,
prompt_tokens=[10000 + i for i in range(prompt2_len)])
prompt2.status = SequenceStatus.WAITING
block_manager.allocate(seq_group2)
# Swap seq group from CPU -> GPU.
if num_lookahead_slots <= block_size:
assert block_manager.can_swap_in(
seq_group, num_lookahead_slots) == AllocStatus.LATER
else:
assert block_manager.can_swap_in(
seq_group, num_lookahead_slots) == AllocStatus.NEVER
@pytest.mark.parametrize("num_lookahead_slots", [0, 2, 10])
@pytest.mark.parametrize("enable_caching", [False, True])
def test_swap_in_infeasible(num_lookahead_slots, enable_caching):
"""Verifies that swapping fails if there is not enough free blocks
to account for unseen tokens and lookahead_slots.
"""
block_size = 8
num_cpu_blocks = 1
num_gpu_blocks = 1
block_manager = SelfAttnBlockSpaceManager(block_size,
num_cpu_blocks,
num_gpu_blocks,
watermark=0,
enable_caching=enable_caching)
prompt_length = block_size - 3
assert prompt_length > 0
prompt, seq_group = create_dummy_prompt("1", prompt_length=prompt_length)
prompt.status = SequenceStatus.WAITING
block_manager.allocate(seq_group)
# Emulate a forward pass by appending a single token.
# The block manager then knows how many unprocessed
# tokens will be written in the next forward pass.
token_id = 0
prompt.status = SequenceStatus.RUNNING
prompt.append_token_id(token_id, {token_id: Logprob(0.0)})
# Swap seq group from GPU -> CPU.
assert block_manager.can_swap_out(seq_group)
block_manager.swap_out(seq_group)
prompt.status = SequenceStatus.SWAPPED
# Swap seq group from CPU -> GPU.
# The number of unseen tokens is 1. If the number of existing
# tokens plus the unseen ones and number of lookahead slots exceeds
# the total number of available GPU blocks then the swap
# should fail.
num_unseen_tokens = 1
if (num_lookahead_slots + num_unseen_tokens +
prompt_length) <= (block_size * num_gpu_blocks):
assert block_manager.can_swap_in(seq_group,
num_lookahead_slots) == AllocStatus.OK
else:
assert block_manager.can_swap_in(
seq_group, num_lookahead_slots) == AllocStatus.NEVER
# TODO(cade/kaiyang): add comprehensive tests for swapping at allocator level.
@pytest.mark.parametrize("block_size", [8, 16])
@pytest.mark.parametrize("prompt_len", [10, 300, 1000])
@pytest.mark.parametrize("num_slots_to_append", [50])
@pytest.mark.parametrize("sliding_window", [20, 32, 200, 512])
def test_sliding_window(block_size, prompt_len, num_slots_to_append,
sliding_window):
"""Verify append_slots consumes the correct number of blocks from the block
table.
"""
num_gpu_blocks = 1024
watermark = 0.1
block_manager = SelfAttnBlockSpaceManager(
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=0,
watermark=watermark,
sliding_window=sliding_window,
)
def check_used(min_n, max_n=None):
if max_n is None:
max_n = min_n
used = num_gpu_blocks - block_manager.get_num_free_gpu_blocks()
assert min_n <= used
assert used <= max_n
def num_blocks(num_tokens):
return (num_tokens + block_size - 1) // block_size
check_used(0)
seq_group = create_seq_group(
seq_prompt_len=prompt_len,
seq_output_lens=[0],
)
check_used(0)
# Allocate seq
assert block_manager.can_allocate(seq_group)
block_manager.allocate(seq_group)
check_used(num_blocks(prompt_len))
# Seq seq to RUNNING
seq = seq_group.get_seqs()[0]
seq.status = SequenceStatus.RUNNING
seq.data.update_num_computed_tokens(prompt_len)
check_used(num_blocks(prompt_len))
# this is how we compute it in SelfAttnBlockSpaceManager.__init__
sliding_blocks = (sliding_window // block_size) + 2
# plus one block for null block
sliding_blocks += 1
# Append tokens to the sequeqnce
for token_id in range(num_slots_to_append):
seq.append_token_id(token_id, {token_id: Logprob(0.0)})
seq.data.update_num_computed_tokens(1)
block_manager.append_slots(seq, num_lookahead_slots=0)
if prompt_len < sliding_window + 10:
check_used(0, sliding_blocks + 1)
else:
check_used(sliding_blocks, sliding_blocks + 1)