
Removing the block manager v1. This is the initial piece of prefix-caching-centric design. In order to achieve prefix-caching-centric design, we need to simplify the code path so that we only use v2 block manager (which has much higher performance on prefix caching).
251 lines
8.7 KiB
Python
251 lines
8.7 KiB
Python
"""Compare the outputs of HF and vLLM when using greedy sampling.
|
|
|
|
It tests chunked prefill. Chunked prefill can be enabled by
|
|
enable_chunked_prefill=True. If prefill size exceeds max_num_batched_tokens,
|
|
prefill requests are chunked.
|
|
|
|
Run `pytest tests/models/test_chunked_prefill.py`.
|
|
"""
|
|
import os
|
|
from contextlib import nullcontext
|
|
|
|
import pytest
|
|
|
|
from ..models.utils import check_logprobs_close, check_outputs_equal
|
|
from ..utils import multi_gpu_test
|
|
|
|
MODELS = [
|
|
"facebook/opt-125m",
|
|
"meta-llama/Llama-2-7b-hf",
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
|
|
@pytest.mark.parametrize("enforce_eager", [False, True])
|
|
# NOTE: Increasing this in this suite will fail CI because we currently cannot
|
|
# reset distributed env properly. Use a value > 1 just when you test.
|
|
@pytest.mark.parametrize("tensor_parallel_size", [1])
|
|
def test_models(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
chunked_prefill_token_size: int,
|
|
enforce_eager: bool,
|
|
tensor_parallel_size: int,
|
|
) -> None:
|
|
"""
|
|
Checks exact match decode between huggingface model and vllm runner with
|
|
chunked prefill.
|
|
"""
|
|
max_num_seqs = chunked_prefill_token_size
|
|
max_num_batched_tokens = chunked_prefill_token_size
|
|
|
|
with hf_runner(model, dtype=dtype) as hf_model:
|
|
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
with vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
enable_chunked_prefill=True,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
enforce_eager=enforce_eager,
|
|
max_num_seqs=max_num_seqs,
|
|
) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
@pytest.mark.parametrize("distributed_executor_backend", ["ray", "mp"])
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
def test_models_distributed(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
distributed_executor_backend: str,
|
|
) -> None:
|
|
if (model == "meta-llama/Llama-2-7b-hf"
|
|
and distributed_executor_backend == "ray"):
|
|
# test ray adag
|
|
os.environ['VLLM_USE_RAY_SPMD_WORKER'] = "1"
|
|
os.environ['VLLM_USE_RAY_COMPILED_DAG'] = "1"
|
|
|
|
dtype = "half"
|
|
max_tokens = 5
|
|
chunked_prefill_token_size = 16
|
|
|
|
# Add a chunked prefill config.
|
|
max_num_seqs = min(chunked_prefill_token_size, 256)
|
|
assert chunked_prefill_token_size != -1
|
|
enable_chunked_prefill = True
|
|
max_num_batched_tokens = chunked_prefill_token_size
|
|
|
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
|
# vLLM needs a fresh new process without cuda initialization.
|
|
# if we run HF first, the cuda initialization will be done and it
|
|
# will hurt multiprocessing backend with fork method (the default method).
|
|
|
|
with vllm_runner(
|
|
model,
|
|
dtype=dtype,
|
|
tensor_parallel_size=2,
|
|
max_num_seqs=max_num_seqs,
|
|
enable_chunked_prefill=enable_chunked_prefill,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
distributed_executor_backend=distributed_executor_backend,
|
|
) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
with hf_runner(model, dtype=dtype) as hf_model:
|
|
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
|
|
|
|
check_outputs_equal(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"kv_cache_dtype,model",
|
|
[("fp8_e4m3",
|
|
"nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme")])
|
|
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
|
|
@pytest.mark.parametrize("max_tokens", [4])
|
|
@pytest.mark.parametrize("chunked_prefill_token_size", [4, 16])
|
|
@pytest.mark.parametrize("enforce_eager", [False, True])
|
|
# NOTE: Increasing this in this suite will fail CI because we currently cannot
|
|
# reset distributed env properly. Use a value > 1 just when you test.
|
|
@pytest.mark.parametrize("tensor_parallel_size", [1])
|
|
# Due to low-precision numerical divergence, this test is too sensitive to
|
|
# the async postprocessor
|
|
@pytest.mark.parametrize("disable_async_output_proc", [True])
|
|
def test_models_with_fp8_kv_cache(
|
|
vllm_runner,
|
|
example_prompts,
|
|
kv_cache_dtype: str,
|
|
model: str,
|
|
max_tokens: int,
|
|
chunked_prefill_token_size: int,
|
|
enforce_eager: bool,
|
|
tensor_parallel_size: int,
|
|
disable_async_output_proc: bool,
|
|
) -> None:
|
|
"""
|
|
Check output logprobs match between no_chunked_prefill and chunked_prefill
|
|
with fp8 kv cache. General fp8 kv-cache tests are covered in test_fp8.py,
|
|
so here we only check chunked prefill.
|
|
"""
|
|
NUM_LOG_PROBS = 8
|
|
|
|
max_num_seqs = chunked_prefill_token_size
|
|
max_num_batched_tokens = chunked_prefill_token_size
|
|
|
|
with vllm_runner(
|
|
model,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
enforce_eager=enforce_eager,
|
|
max_num_seqs=max_num_seqs,
|
|
kv_cache_dtype=kv_cache_dtype,
|
|
disable_async_output_proc=disable_async_output_proc,
|
|
) as vllm_model:
|
|
no_chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
|
|
example_prompts, max_tokens, NUM_LOG_PROBS)
|
|
|
|
with vllm_runner(
|
|
model,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
enable_chunked_prefill=True,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
enforce_eager=enforce_eager,
|
|
max_num_seqs=max_num_seqs,
|
|
kv_cache_dtype=kv_cache_dtype,
|
|
disable_async_output_proc=disable_async_output_proc,
|
|
) as vllm_model:
|
|
chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
|
|
example_prompts, max_tokens, NUM_LOG_PROBS)
|
|
|
|
check_logprobs_close(
|
|
outputs_0_lst=no_chunked_prefill_outputs,
|
|
outputs_1_lst=chunked_prefill_outputs,
|
|
name_0="no_chunked_prefill",
|
|
name_1="chunked_prefill",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("max_tokens", [16])
|
|
@pytest.mark.parametrize("enforce_eager", [False])
|
|
@pytest.mark.parametrize("chunk_size", [30, 32])
|
|
# NOTE: Increasing this in this suite will fail CI because we currently cannot
|
|
# reset distributed env properly. Use a value > 1 just when you test.
|
|
@pytest.mark.parametrize("tensor_parallel_size", [1])
|
|
def test_with_prefix_caching(
|
|
vllm_runner,
|
|
max_tokens: int,
|
|
enforce_eager: bool,
|
|
chunk_size: int,
|
|
tensor_parallel_size: int,
|
|
) -> None:
|
|
"""
|
|
Checks exact match decode with and without prefix caching
|
|
with chunked prefill enabled.
|
|
"""
|
|
model = "meta-llama/Llama-2-7b-chat-hf"
|
|
# The common prompt has 142 tokens with Llama-2 tokenizer.
|
|
common_prompt = "You are a helpful AI assistant " * 20
|
|
unique_prompts = [
|
|
"Question", # Warmup
|
|
"Question", # Fully cached
|
|
"Another question", # Partial cached
|
|
]
|
|
full_prompts = [f"{common_prompt}\n{p}" for p in unique_prompts]
|
|
|
|
max_num_batched_tokens = max_num_seqs = chunk_size
|
|
outputs = {} # type: ignore
|
|
check_result = True
|
|
for enable in (True, False):
|
|
with vllm_runner(
|
|
model,
|
|
dtype="half",
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
enable_chunked_prefill=True,
|
|
enable_prefix_caching=enable,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
enforce_eager=enforce_eager,
|
|
max_num_seqs=max_num_seqs,
|
|
) as vllm_model:
|
|
# It should fail when prefix caching is enable and chunk
|
|
# size is not a multiple of block size (16).
|
|
should_fail = chunk_size % 16 != 0 and enable
|
|
check_result &= not should_fail
|
|
outputs[enable] = []
|
|
# Send the request one-by-one to ensure the cache is populated.
|
|
with pytest.raises(ValueError) if should_fail else nullcontext():
|
|
for prompt in full_prompts:
|
|
outputs[enable] += vllm_model.generate_greedy([prompt],
|
|
max_tokens)
|
|
|
|
# Check results only if we did not expect a failure.
|
|
if check_result:
|
|
check_outputs_equal(
|
|
outputs_0_lst=outputs[False],
|
|
outputs_1_lst=outputs[True],
|
|
name_0="w/o prefix caching",
|
|
name_1="with prefix caching",
|
|
)
|