vllm/vllm/v1/engine/llm_engine.py
Aaron Pham 80e9afb5bc
[V1][Core] Support for Structured Outputs (#12388)
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
Signed-off-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
2025-03-07 07:19:11 -08:00

242 lines
9.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from collections.abc import Mapping
from typing import Optional, Union
from typing_extensions import TypeVar
import vllm.envs as envs
from vllm.config import ParallelConfig, VllmConfig
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.metrics_types import StatLoggerBase
from vllm.inputs import INPUT_REGISTRY, InputRegistry, PromptType
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
from vllm.outputs import RequestOutput
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer_group import (
BaseTokenizerGroup, init_tokenizer_from_configs)
from vllm.usage.usage_lib import UsageContext
from vllm.v1.engine.core_client import EngineCoreClient
from vllm.v1.engine.output_processor import OutputProcessor
from vllm.v1.engine.parallel_sampling import ParentRequest
from vllm.v1.engine.processor import Processor
from vllm.v1.executor.abstract import Executor
logger = init_logger(__name__)
_G = TypeVar("_G", bound=BaseTokenizerGroup, default=BaseTokenizerGroup)
class LLMEngine:
"""Legacy LLMEngine for backwards compatibility."""
def __init__(
self,
vllm_config: VllmConfig,
executor_class: type[Executor],
log_stats: bool,
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
stat_loggers: Optional[dict[str, StatLoggerBase]] = None,
input_registry: InputRegistry = INPUT_REGISTRY,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
use_cached_outputs: bool = False,
multiprocess_mode: bool = False,
) -> None:
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
# important: init dp group before init the engine_core
self.parallel_config = vllm_config.parallel_config
self.dp_enabled = self.parallel_config.data_parallel_size > 1 # noqa
self.should_execute_dummy_batch = False
if self.dp_enabled:
self.dp_group = self.parallel_config.stateless_init_dp_group()
# Tokenizer (+ ensure liveness if running in another process).
self.tokenizer = init_tokenizer_from_configs(
model_config=vllm_config.model_config,
scheduler_config=vllm_config.scheduler_config,
parallel_config=vllm_config.parallel_config,
lora_config=vllm_config.lora_config)
self.tokenizer.ping()
# Processor (convert Inputs --> EngineCoreRequests)
self.processor = Processor(vllm_config=vllm_config,
tokenizer=self.tokenizer,
input_registry=input_registry,
mm_registry=mm_registry)
# OutputProcessor (convert EngineCoreOutputs --> RequestOutput).
self.output_processor = OutputProcessor(self.tokenizer,
log_stats=False)
# EngineCore (gets EngineCoreRequests and gives EngineCoreOutputs)
self.engine_core = EngineCoreClient.make_client(
multiprocess_mode=multiprocess_mode,
asyncio_mode=False,
vllm_config=vllm_config,
executor_class=executor_class,
log_stats=False, # FIXME: implement
)
if not multiprocess_mode:
# for v0 compatibility
self.model_executor = self.engine_core.engine_core.model_executor # type: ignore
@classmethod
def from_engine_args(
cls,
engine_args: EngineArgs,
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
stat_loggers: Optional[dict[str, StatLoggerBase]] = None,
enable_multiprocessing: bool = False,
) -> "LLMEngine":
"""Creates an LLM engine from the engine arguments."""
# Create the engine configs.
vllm_config = engine_args.create_engine_config(usage_context)
executor_class = Executor.get_class(vllm_config)
if envs.VLLM_ENABLE_V1_MULTIPROCESSING:
logger.debug("Enabling multiprocessing for LLMEngine.")
enable_multiprocessing = True
# Create the LLMEngine.
return cls(vllm_config=vllm_config,
executor_class=executor_class,
log_stats=not engine_args.disable_log_stats,
usage_context=usage_context,
stat_loggers=stat_loggers,
multiprocess_mode=enable_multiprocessing)
def get_num_unfinished_requests(self) -> int:
return self.output_processor.get_num_unfinished_requests()
def has_unfinished_requests(self) -> bool:
has_unfinished = self.output_processor.has_unfinished_requests()
if not self.dp_enabled:
return has_unfinished
return self.has_unfinished_requests_dp(has_unfinished)
def has_unfinished_requests_dp(self, has_unfinished: bool) -> bool:
aggregated_has_unfinished = ParallelConfig.has_unfinished_dp(
self.dp_group, has_unfinished)
if not has_unfinished and aggregated_has_unfinished:
self.should_execute_dummy_batch = True
return aggregated_has_unfinished
@classmethod
def validate_outputs(cls, outputs, output_type):
return outputs
def abort_request(self, request_ids: list[str]) -> None:
"""Remove request_ids from EngineCore and Detokenizer."""
self.engine_core.abort_requests(request_ids)
self.output_processor.abort_requests(request_ids)
def add_request(
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> None:
# 1) Fan out child requests (for n>1)
parent_req = ParentRequest.from_params(request_id, params)
n = params.n if isinstance(params, SamplingParams) else 1
for idx in range(n):
if parent_req is not None:
request_id, params = parent_req.get_child_info(idx)
# 2) Process raw inputs into the request.
request = self.processor.process_inputs(request_id, prompt, params,
arrival_time, lora_request,
trace_headers,
prompt_adapter_request,
priority)
# 3) Make a new RequestState and queue.
self.output_processor.add_request(request, parent_req, idx)
# 3) Add the request to EngineCore.
self.engine_core.add_request(request)
def step(self) -> list[RequestOutput]:
if self.should_execute_dummy_batch:
self.should_execute_dummy_batch = False
self.engine_core.execute_dummy_batch()
return []
# 1) Get EngineCoreOutput from the EngineCore.
outputs = self.engine_core.get_output()
# 2) Process EngineCoreOutputs.
processed_outputs = self.output_processor.process_outputs(
outputs.outputs)
# 3) Abort any reqs that finished due to stop strings.
self.engine_core.abort_requests(processed_outputs.reqs_to_abort)
return processed_outputs.request_outputs
def get_model_config(self):
return self.model_config
def start_profile(self):
self.engine_core.profile(True)
def stop_profile(self):
self.engine_core.profile(False)
def reset_prefix_cache(self):
self.engine_core.reset_prefix_cache()
def sleep(self, level: int = 1):
self.engine_core.sleep(level)
def wake_up(self):
self.engine_core.wake_up()
def get_tokenizer_group(
self,
group_type: type[_G] = BaseTokenizerGroup,
) -> _G:
tokenizer_group = self.tokenizer
if tokenizer_group is None:
raise ValueError("Unable to get tokenizer because "
"skip_tokenizer_init is True")
if not isinstance(tokenizer_group, group_type):
raise TypeError("Invalid type of tokenizer group. "
f"Expected type: {group_type}, but "
f"found type: {type(tokenizer_group)}")
return tokenizer_group
def add_lora(self, lora_request: LoRARequest) -> bool:
"""Load a new LoRA adapter into the engine for future requests."""
return self.engine_core.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
"""Remove an already loaded LoRA adapter."""
return self.engine_core.remove_lora(lora_id)
def list_loras(self) -> set[int]:
"""List all registered adapters."""
return self.engine_core.list_loras()
def pin_lora(self, lora_id: int) -> bool:
"""Prevent an adapter from being evicted."""
return self.engine_core.pin_lora(lora_id)