
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com> Signed-off-by: Lucas Wilkinson <lwilkinson@neuralmagic.com> Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
78 lines
3.3 KiB
Plaintext
78 lines
3.3 KiB
Plaintext
#include <cudaTypedefs.h>
|
|
#include "c3x/scaled_mm_kernels.hpp"
|
|
|
|
#include "cuda_utils.h"
|
|
|
|
/*
|
|
This file defines quantized GEMM operations using the CUTLASS 3.x API, for
|
|
NVIDIA GPUs with sm90a (Hopper).
|
|
*/
|
|
|
|
#if defined ENABLE_SCALED_MM_SM90 && ENABLE_SCALED_MM_SM90
|
|
|
|
void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales,
|
|
std::optional<torch::Tensor> const& bias) {
|
|
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
|
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
|
|
|
int M = a.size(0), N = b.size(1), K = a.size(1);
|
|
|
|
if ((a_scales.numel() == 1 || a_scales.numel() == a.size(0)) &&
|
|
(b_scales.numel() == 1 || b_scales.numel() == b.size(1))) {
|
|
// Standard per-tensor/per-token/per-channel scaling
|
|
TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous());
|
|
if (a.dtype() == torch::kFloat8_e4m3fn) {
|
|
vllm::cutlass_scaled_mm_sm90_fp8(c, a, b, a_scales, b_scales, bias);
|
|
} else {
|
|
TORCH_CHECK(a.dtype() == torch::kInt8);
|
|
vllm::cutlass_scaled_mm_sm90_int8(c, a, b, a_scales, b_scales, bias);
|
|
}
|
|
} else {
|
|
using GroupShape = std::array<int64_t, 2>;
|
|
auto make_group_shape = [](torch::Tensor const& x,
|
|
torch::Tensor const& s) -> GroupShape {
|
|
TORCH_CHECK(s.dim() == 2, "cutlass_scaled_mm group scales must be 2D");
|
|
return {cuda_utils::ceil_div(x.size(0), s.size(0)),
|
|
cuda_utils::ceil_div(x.size(1), s.size(1))};
|
|
};
|
|
|
|
GroupShape a_scale_group_shape = make_group_shape(a, a_scales);
|
|
GroupShape b_scale_group_shape = make_group_shape(b, b_scales);
|
|
|
|
// 1x128 per-token group scales for activations
|
|
// 128x128 blockwise scales for weights
|
|
TORCH_CHECK((a_scale_group_shape == GroupShape{1, 128} &&
|
|
b_scale_group_shape == GroupShape{128, 128} &&
|
|
a.dtype() == torch::kFloat8_e4m3fn &&
|
|
b.dtype() == torch::kFloat8_e4m3fn),
|
|
"cutlass_scaled_mm only supports datatype float8_e4m3fn.\n"
|
|
"a_scale_group_shape must be [1, 128]. Got: [",
|
|
a_scale_group_shape[0], ", ", a_scale_group_shape[1],
|
|
"]\n"
|
|
"b_scale_group_shape must be [128, 128]. Got: [",
|
|
b_scale_group_shape[0], ", ", b_scale_group_shape[1], "]");
|
|
TORCH_CHECK(!bias, "Bias not yet supported blockwise scaled_mm");
|
|
|
|
vllm::cutlass_scaled_mm_blockwise_sm90_fp8(c, a, b, a_scales, b_scales);
|
|
}
|
|
}
|
|
|
|
void cutlass_scaled_mm_azp_sm90(torch::Tensor& out, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales,
|
|
torch::Tensor const& azp_adj,
|
|
std::optional<torch::Tensor> const& azp,
|
|
std::optional<torch::Tensor> const& bias) {
|
|
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
|
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
|
|
|
vllm::cutlass_scaled_mm_azp_sm90_int8(out, a, b, a_scales, b_scales, azp_adj,
|
|
azp, bias);
|
|
}
|
|
|
|
#endif
|