
Co-authored-by: Nick Hill <nickhill@us.ibm.com> Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com> Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com> Co-authored-by: Simon Mo <simon.mo@hey.com>
572 lines
21 KiB
Python
572 lines
21 KiB
Python
import asyncio
|
|
import importlib
|
|
import inspect
|
|
import multiprocessing
|
|
import os
|
|
import re
|
|
import signal
|
|
import socket
|
|
import tempfile
|
|
from argparse import Namespace
|
|
from contextlib import asynccontextmanager
|
|
from functools import partial
|
|
from http import HTTPStatus
|
|
from typing import AsyncIterator, Optional, Set
|
|
|
|
import uvloop
|
|
from fastapi import APIRouter, FastAPI, Request
|
|
from fastapi.exceptions import RequestValidationError
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from fastapi.responses import JSONResponse, Response, StreamingResponse
|
|
from starlette.datastructures import State
|
|
from starlette.routing import Mount
|
|
from typing_extensions import assert_never
|
|
|
|
import vllm.envs as envs
|
|
from vllm.config import ModelConfig
|
|
from vllm.engine.arg_utils import AsyncEngineArgs
|
|
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
|
from vllm.engine.multiprocessing.client import MQLLMEngineClient
|
|
from vllm.engine.multiprocessing.engine import run_mp_engine
|
|
from vllm.engine.protocol import EngineClient
|
|
from vllm.entrypoints.launcher import serve_http
|
|
from vllm.entrypoints.logger import RequestLogger
|
|
from vllm.entrypoints.openai.cli_args import make_arg_parser
|
|
# yapf conflicts with isort for this block
|
|
# yapf: disable
|
|
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
DetokenizeRequest,
|
|
DetokenizeResponse,
|
|
EmbeddingRequest,
|
|
EmbeddingResponse, ErrorResponse,
|
|
LoadLoraAdapterRequest,
|
|
TokenizeRequest,
|
|
TokenizeResponse,
|
|
UnloadLoraAdapterRequest)
|
|
# yapf: enable
|
|
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
|
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
|
|
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
|
|
from vllm.entrypoints.openai.serving_tokenization import (
|
|
OpenAIServingTokenization)
|
|
from vllm.logger import init_logger
|
|
from vllm.usage.usage_lib import UsageContext
|
|
from vllm.utils import FlexibleArgumentParser, get_open_zmq_ipc_path
|
|
from vllm.version import __version__ as VLLM_VERSION
|
|
|
|
TIMEOUT_KEEP_ALIVE = 5 # seconds
|
|
|
|
prometheus_multiproc_dir: tempfile.TemporaryDirectory
|
|
|
|
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
|
|
logger = init_logger('vllm.entrypoints.openai.api_server')
|
|
|
|
_running_tasks: Set[asyncio.Task] = set()
|
|
|
|
|
|
@asynccontextmanager
|
|
async def lifespan(app: FastAPI):
|
|
try:
|
|
if app.state.log_stats:
|
|
engine_client: EngineClient = app.state.engine_client
|
|
|
|
async def _force_log():
|
|
while True:
|
|
await asyncio.sleep(10.)
|
|
await engine_client.do_log_stats()
|
|
|
|
task = asyncio.create_task(_force_log())
|
|
_running_tasks.add(task)
|
|
task.add_done_callback(_running_tasks.remove)
|
|
else:
|
|
task = None
|
|
try:
|
|
yield
|
|
finally:
|
|
if task is not None:
|
|
task.cancel()
|
|
finally:
|
|
# Ensure app state including engine ref is gc'd
|
|
del app.state
|
|
|
|
|
|
@asynccontextmanager
|
|
async def build_async_engine_client(
|
|
args: Namespace) -> AsyncIterator[Optional[EngineClient]]:
|
|
|
|
# Context manager to handle engine_client lifecycle
|
|
# Ensures everything is shutdown and cleaned up on error/exit
|
|
engine_args = AsyncEngineArgs.from_cli_args(args)
|
|
|
|
async with build_async_engine_client_from_engine_args(
|
|
engine_args, args.disable_frontend_multiprocessing) as engine:
|
|
yield engine
|
|
|
|
|
|
@asynccontextmanager
|
|
async def build_async_engine_client_from_engine_args(
|
|
engine_args: AsyncEngineArgs,
|
|
disable_frontend_multiprocessing: bool = False,
|
|
) -> AsyncIterator[Optional[EngineClient]]:
|
|
"""
|
|
Create EngineClient, either:
|
|
- in-process using the AsyncLLMEngine Directly
|
|
- multiprocess using AsyncLLMEngine RPC
|
|
|
|
Returns the Client or None if the creation failed.
|
|
"""
|
|
|
|
# Fall back
|
|
# TODO: fill out feature matrix.
|
|
if (MQLLMEngineClient.is_unsupported_config(engine_args)
|
|
or disable_frontend_multiprocessing):
|
|
engine_config = engine_args.create_engine_config()
|
|
uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config),
|
|
"uses_ray", False)
|
|
|
|
build_engine = partial(AsyncLLMEngine.from_engine_args,
|
|
engine_args=engine_args,
|
|
engine_config=engine_config,
|
|
usage_context=UsageContext.OPENAI_API_SERVER)
|
|
if uses_ray:
|
|
# Must run in main thread with ray for its signal handlers to work
|
|
engine_client = build_engine()
|
|
else:
|
|
engine_client = await asyncio.get_running_loop().run_in_executor(
|
|
None, build_engine)
|
|
|
|
yield engine_client
|
|
return
|
|
|
|
# Otherwise, use the multiprocessing AsyncLLMEngine.
|
|
else:
|
|
if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
|
|
# Make TemporaryDirectory for prometheus multiprocessing
|
|
# Note: global TemporaryDirectory will be automatically
|
|
# cleaned up upon exit.
|
|
global prometheus_multiproc_dir
|
|
prometheus_multiproc_dir = tempfile.TemporaryDirectory()
|
|
os.environ[
|
|
"PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
|
|
else:
|
|
logger.warning(
|
|
"Found PROMETHEUS_MULTIPROC_DIR was set by user. "
|
|
"This directory must be wiped between vLLM runs or "
|
|
"you will find inaccurate metrics. Unset the variable "
|
|
"and vLLM will properly handle cleanup.")
|
|
|
|
# Select random path for IPC.
|
|
ipc_path = get_open_zmq_ipc_path()
|
|
logger.info("Multiprocessing frontend to use %s for IPC Path.",
|
|
ipc_path)
|
|
|
|
# Start RPCServer in separate process (holds the LLMEngine).
|
|
# the current process might have CUDA context,
|
|
# so we need to spawn a new process
|
|
context = multiprocessing.get_context("spawn")
|
|
|
|
engine_process = context.Process(target=run_mp_engine,
|
|
args=(engine_args,
|
|
UsageContext.OPENAI_API_SERVER,
|
|
ipc_path))
|
|
engine_process.start()
|
|
logger.info("Started engine process with PID %d", engine_process.pid)
|
|
|
|
# Build RPCClient, which conforms to EngineClient Protocol.
|
|
# NOTE: Actually, this is not true yet. We still need to support
|
|
# embedding models via RPC (see TODO above)
|
|
engine_config = engine_args.create_engine_config()
|
|
mp_engine_client = MQLLMEngineClient(ipc_path, engine_config)
|
|
|
|
try:
|
|
while True:
|
|
try:
|
|
await mp_engine_client.setup()
|
|
break
|
|
except TimeoutError:
|
|
if not engine_process.is_alive():
|
|
logger.error("Engine process died before responding "
|
|
"to readiness probe")
|
|
yield None
|
|
return
|
|
|
|
yield mp_engine_client # type: ignore[misc]
|
|
finally:
|
|
# Ensure rpc server process was terminated
|
|
engine_process.terminate()
|
|
|
|
# Close all open connections to the backend
|
|
mp_engine_client.close()
|
|
|
|
# Wait for engine process to join
|
|
engine_process.join(4)
|
|
if engine_process.exitcode is None:
|
|
# Kill if taking longer than 5 seconds to stop
|
|
engine_process.kill()
|
|
|
|
# Lazy import for prometheus multiprocessing.
|
|
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
|
# before prometheus_client is imported.
|
|
# See https://prometheus.github.io/client_python/multiprocess/
|
|
from prometheus_client import multiprocess
|
|
multiprocess.mark_process_dead(engine_process.pid)
|
|
|
|
|
|
router = APIRouter()
|
|
|
|
|
|
def mount_metrics(app: FastAPI):
|
|
# Lazy import for prometheus multiprocessing.
|
|
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
|
|
# before prometheus_client is imported.
|
|
# See https://prometheus.github.io/client_python/multiprocess/
|
|
from prometheus_client import (CollectorRegistry, make_asgi_app,
|
|
multiprocess)
|
|
|
|
prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
|
|
if prometheus_multiproc_dir_path is not None:
|
|
logger.info("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
|
|
prometheus_multiproc_dir_path)
|
|
registry = CollectorRegistry()
|
|
multiprocess.MultiProcessCollector(registry)
|
|
|
|
# Add prometheus asgi middleware to route /metrics requests
|
|
metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
|
|
else:
|
|
# Add prometheus asgi middleware to route /metrics requests
|
|
metrics_route = Mount("/metrics", make_asgi_app())
|
|
|
|
# Workaround for 307 Redirect for /metrics
|
|
metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
|
|
app.routes.append(metrics_route)
|
|
|
|
|
|
def chat(request: Request) -> OpenAIServingChat:
|
|
return request.app.state.openai_serving_chat
|
|
|
|
|
|
def completion(request: Request) -> OpenAIServingCompletion:
|
|
return request.app.state.openai_serving_completion
|
|
|
|
|
|
def tokenization(request: Request) -> OpenAIServingTokenization:
|
|
return request.app.state.openai_serving_tokenization
|
|
|
|
|
|
def embedding(request: Request) -> OpenAIServingEmbedding:
|
|
return request.app.state.openai_serving_embedding
|
|
|
|
|
|
def engine_client(request: Request) -> EngineClient:
|
|
return request.app.state.engine_client
|
|
|
|
|
|
@router.get("/health")
|
|
async def health(raw_request: Request) -> Response:
|
|
"""Health check."""
|
|
await engine_client(raw_request).check_health()
|
|
return Response(status_code=200)
|
|
|
|
|
|
@router.post("/tokenize")
|
|
async def tokenize(request: TokenizeRequest, raw_request: Request):
|
|
generator = await tokenization(raw_request).create_tokenize(request)
|
|
if isinstance(generator, ErrorResponse):
|
|
return JSONResponse(content=generator.model_dump(),
|
|
status_code=generator.code)
|
|
elif isinstance(generator, TokenizeResponse):
|
|
return JSONResponse(content=generator.model_dump())
|
|
|
|
assert_never(generator)
|
|
|
|
|
|
@router.post("/detokenize")
|
|
async def detokenize(request: DetokenizeRequest, raw_request: Request):
|
|
generator = await tokenization(raw_request).create_detokenize(request)
|
|
if isinstance(generator, ErrorResponse):
|
|
return JSONResponse(content=generator.model_dump(),
|
|
status_code=generator.code)
|
|
elif isinstance(generator, DetokenizeResponse):
|
|
return JSONResponse(content=generator.model_dump())
|
|
|
|
assert_never(generator)
|
|
|
|
|
|
@router.get("/v1/models")
|
|
async def show_available_models(raw_request: Request):
|
|
models = await completion(raw_request).show_available_models()
|
|
return JSONResponse(content=models.model_dump())
|
|
|
|
|
|
@router.get("/version")
|
|
async def show_version():
|
|
ver = {"version": VLLM_VERSION}
|
|
return JSONResponse(content=ver)
|
|
|
|
|
|
@router.post("/v1/chat/completions")
|
|
async def create_chat_completion(request: ChatCompletionRequest,
|
|
raw_request: Request):
|
|
|
|
generator = await chat(raw_request).create_chat_completion(
|
|
request, raw_request)
|
|
|
|
if isinstance(generator, ErrorResponse):
|
|
return JSONResponse(content=generator.model_dump(),
|
|
status_code=generator.code)
|
|
|
|
elif isinstance(generator, ChatCompletionResponse):
|
|
return JSONResponse(content=generator.model_dump())
|
|
|
|
return StreamingResponse(content=generator, media_type="text/event-stream")
|
|
|
|
|
|
@router.post("/v1/completions")
|
|
async def create_completion(request: CompletionRequest, raw_request: Request):
|
|
generator = await completion(raw_request).create_completion(
|
|
request, raw_request)
|
|
if isinstance(generator, ErrorResponse):
|
|
return JSONResponse(content=generator.model_dump(),
|
|
status_code=generator.code)
|
|
elif isinstance(generator, CompletionResponse):
|
|
return JSONResponse(content=generator.model_dump())
|
|
|
|
return StreamingResponse(content=generator, media_type="text/event-stream")
|
|
|
|
|
|
@router.post("/v1/embeddings")
|
|
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
|
|
generator = await embedding(raw_request).create_embedding(
|
|
request, raw_request)
|
|
if isinstance(generator, ErrorResponse):
|
|
return JSONResponse(content=generator.model_dump(),
|
|
status_code=generator.code)
|
|
elif isinstance(generator, EmbeddingResponse):
|
|
return JSONResponse(content=generator.model_dump())
|
|
|
|
assert_never(generator)
|
|
|
|
|
|
if envs.VLLM_TORCH_PROFILER_DIR:
|
|
logger.warning(
|
|
"Torch Profiler is enabled in the API server. This should ONLY be "
|
|
"used for local development!")
|
|
|
|
@router.post("/start_profile")
|
|
async def start_profile(raw_request: Request):
|
|
logger.info("Starting profiler...")
|
|
await engine_client(raw_request).start_profile()
|
|
logger.info("Profiler started.")
|
|
return Response(status_code=200)
|
|
|
|
@router.post("/stop_profile")
|
|
async def stop_profile(raw_request: Request):
|
|
logger.info("Stopping profiler...")
|
|
await engine_client(raw_request).stop_profile()
|
|
logger.info("Profiler stopped.")
|
|
return Response(status_code=200)
|
|
|
|
|
|
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
|
|
logger.warning(
|
|
"Lora dynamic loading & unloading is enabled in the API server. "
|
|
"This should ONLY be used for local development!")
|
|
|
|
@router.post("/v1/load_lora_adapter")
|
|
async def load_lora_adapter(request: LoadLoraAdapterRequest,
|
|
raw_request: Request):
|
|
response = await chat(raw_request).load_lora_adapter(request)
|
|
if isinstance(response, ErrorResponse):
|
|
return JSONResponse(content=response.model_dump(),
|
|
status_code=response.code)
|
|
|
|
response = await completion(raw_request).load_lora_adapter(request)
|
|
if isinstance(response, ErrorResponse):
|
|
return JSONResponse(content=response.model_dump(),
|
|
status_code=response.code)
|
|
|
|
return Response(status_code=200, content=response)
|
|
|
|
@router.post("/v1/unload_lora_adapter")
|
|
async def unload_lora_adapter(request: UnloadLoraAdapterRequest,
|
|
raw_request: Request):
|
|
response = await chat(raw_request).unload_lora_adapter(request)
|
|
if isinstance(response, ErrorResponse):
|
|
return JSONResponse(content=response.model_dump(),
|
|
status_code=response.code)
|
|
|
|
response = await completion(raw_request).unload_lora_adapter(request)
|
|
if isinstance(response, ErrorResponse):
|
|
return JSONResponse(content=response.model_dump(),
|
|
status_code=response.code)
|
|
|
|
return Response(status_code=200, content=response)
|
|
|
|
|
|
def build_app(args: Namespace) -> FastAPI:
|
|
if args.disable_fastapi_docs:
|
|
app = FastAPI(openapi_url=None,
|
|
docs_url=None,
|
|
redoc_url=None,
|
|
lifespan=lifespan)
|
|
else:
|
|
app = FastAPI(lifespan=lifespan)
|
|
app.include_router(router)
|
|
app.root_path = args.root_path
|
|
|
|
mount_metrics(app)
|
|
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=args.allowed_origins,
|
|
allow_credentials=args.allow_credentials,
|
|
allow_methods=args.allowed_methods,
|
|
allow_headers=args.allowed_headers,
|
|
)
|
|
|
|
@app.exception_handler(RequestValidationError)
|
|
async def validation_exception_handler(_, exc):
|
|
chat = app.state.openai_serving_chat
|
|
err = chat.create_error_response(message=str(exc))
|
|
return JSONResponse(err.model_dump(),
|
|
status_code=HTTPStatus.BAD_REQUEST)
|
|
|
|
if token := envs.VLLM_API_KEY or args.api_key:
|
|
|
|
@app.middleware("http")
|
|
async def authentication(request: Request, call_next):
|
|
root_path = "" if args.root_path is None else args.root_path
|
|
if request.method == "OPTIONS":
|
|
return await call_next(request)
|
|
if not request.url.path.startswith(f"{root_path}/v1"):
|
|
return await call_next(request)
|
|
if request.headers.get("Authorization") != "Bearer " + token:
|
|
return JSONResponse(content={"error": "Unauthorized"},
|
|
status_code=401)
|
|
return await call_next(request)
|
|
|
|
for middleware in args.middleware:
|
|
module_path, object_name = middleware.rsplit(".", 1)
|
|
imported = getattr(importlib.import_module(module_path), object_name)
|
|
if inspect.isclass(imported):
|
|
app.add_middleware(imported)
|
|
elif inspect.iscoroutinefunction(imported):
|
|
app.middleware("http")(imported)
|
|
else:
|
|
raise ValueError(f"Invalid middleware {middleware}. "
|
|
f"Must be a function or a class.")
|
|
|
|
return app
|
|
|
|
|
|
def init_app_state(
|
|
engine_client: EngineClient,
|
|
model_config: ModelConfig,
|
|
state: State,
|
|
args: Namespace,
|
|
) -> None:
|
|
if args.served_model_name is not None:
|
|
served_model_names = args.served_model_name
|
|
else:
|
|
served_model_names = [args.model]
|
|
|
|
if args.disable_log_requests:
|
|
request_logger = None
|
|
else:
|
|
request_logger = RequestLogger(max_log_len=args.max_log_len)
|
|
|
|
state.engine_client = engine_client
|
|
state.log_stats = not args.disable_log_stats
|
|
|
|
state.openai_serving_chat = OpenAIServingChat(
|
|
engine_client,
|
|
model_config,
|
|
served_model_names,
|
|
args.response_role,
|
|
lora_modules=args.lora_modules,
|
|
prompt_adapters=args.prompt_adapters,
|
|
request_logger=request_logger,
|
|
chat_template=args.chat_template,
|
|
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
|
|
enable_auto_tools=args.enable_auto_tool_choice,
|
|
tool_parser=args.tool_call_parser)
|
|
state.openai_serving_completion = OpenAIServingCompletion(
|
|
engine_client,
|
|
model_config,
|
|
served_model_names,
|
|
lora_modules=args.lora_modules,
|
|
prompt_adapters=args.prompt_adapters,
|
|
request_logger=request_logger,
|
|
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
|
|
)
|
|
state.openai_serving_embedding = OpenAIServingEmbedding(
|
|
engine_client,
|
|
model_config,
|
|
served_model_names,
|
|
request_logger=request_logger,
|
|
)
|
|
state.openai_serving_tokenization = OpenAIServingTokenization(
|
|
engine_client,
|
|
model_config,
|
|
served_model_names,
|
|
lora_modules=args.lora_modules,
|
|
request_logger=request_logger,
|
|
chat_template=args.chat_template,
|
|
)
|
|
|
|
|
|
async def run_server(args, **uvicorn_kwargs) -> None:
|
|
logger.info("vLLM API server version %s", VLLM_VERSION)
|
|
logger.info("args: %s", args)
|
|
|
|
temp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
|
temp_socket.bind(("", args.port))
|
|
|
|
def signal_handler(*_) -> None:
|
|
# Interrupt server on sigterm while initializing
|
|
raise KeyboardInterrupt("terminated")
|
|
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
async with build_async_engine_client(args) as engine_client:
|
|
# If None, creation of the client failed and we exit.
|
|
if engine_client is None:
|
|
return
|
|
|
|
app = build_app(args)
|
|
|
|
model_config = await engine_client.get_model_config()
|
|
init_app_state(engine_client, model_config, app.state, args)
|
|
|
|
temp_socket.close()
|
|
|
|
shutdown_task = await serve_http(
|
|
app,
|
|
host=args.host,
|
|
port=args.port,
|
|
log_level=args.uvicorn_log_level,
|
|
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
|
|
ssl_keyfile=args.ssl_keyfile,
|
|
ssl_certfile=args.ssl_certfile,
|
|
ssl_ca_certs=args.ssl_ca_certs,
|
|
ssl_cert_reqs=args.ssl_cert_reqs,
|
|
**uvicorn_kwargs,
|
|
)
|
|
|
|
# NB: Await server shutdown only after the backend context is exited
|
|
await shutdown_task
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# NOTE(simon):
|
|
# This section should be in sync with vllm/scripts.py for CLI entrypoints.
|
|
parser = FlexibleArgumentParser(
|
|
description="vLLM OpenAI-Compatible RESTful API server.")
|
|
parser = make_arg_parser(parser)
|
|
args = parser.parse_args()
|
|
|
|
uvloop.run(run_server(args))
|