vllm/vllm/entrypoints/openai/api_server.py
Alexander Matveev 7c7714d856
[Core][Bugfix][Perf] Introduce MQLLMEngine to avoid asyncio OH (#8157)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
Co-authored-by: rshaw@neuralmagic.com <rshaw@neuralmagic.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2024-09-18 13:56:58 +00:00

572 lines
21 KiB
Python

import asyncio
import importlib
import inspect
import multiprocessing
import os
import re
import signal
import socket
import tempfile
from argparse import Namespace
from contextlib import asynccontextmanager
from functools import partial
from http import HTTPStatus
from typing import AsyncIterator, Optional, Set
import uvloop
from fastapi import APIRouter, FastAPI, Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, Response, StreamingResponse
from starlette.datastructures import State
from starlette.routing import Mount
from typing_extensions import assert_never
import vllm.envs as envs
from vllm.config import ModelConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.engine.multiprocessing.client import MQLLMEngineClient
from vllm.engine.multiprocessing.engine import run_mp_engine
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.launcher import serve_http
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.cli_args import make_arg_parser
# yapf conflicts with isort for this block
# yapf: disable
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
CompletionResponse,
DetokenizeRequest,
DetokenizeResponse,
EmbeddingRequest,
EmbeddingResponse, ErrorResponse,
LoadLoraAdapterRequest,
TokenizeRequest,
TokenizeResponse,
UnloadLoraAdapterRequest)
# yapf: enable
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from vllm.entrypoints.openai.serving_tokenization import (
OpenAIServingTokenization)
from vllm.logger import init_logger
from vllm.usage.usage_lib import UsageContext
from vllm.utils import FlexibleArgumentParser, get_open_zmq_ipc_path
from vllm.version import __version__ as VLLM_VERSION
TIMEOUT_KEEP_ALIVE = 5 # seconds
prometheus_multiproc_dir: tempfile.TemporaryDirectory
# Cannot use __name__ (https://github.com/vllm-project/vllm/pull/4765)
logger = init_logger('vllm.entrypoints.openai.api_server')
_running_tasks: Set[asyncio.Task] = set()
@asynccontextmanager
async def lifespan(app: FastAPI):
try:
if app.state.log_stats:
engine_client: EngineClient = app.state.engine_client
async def _force_log():
while True:
await asyncio.sleep(10.)
await engine_client.do_log_stats()
task = asyncio.create_task(_force_log())
_running_tasks.add(task)
task.add_done_callback(_running_tasks.remove)
else:
task = None
try:
yield
finally:
if task is not None:
task.cancel()
finally:
# Ensure app state including engine ref is gc'd
del app.state
@asynccontextmanager
async def build_async_engine_client(
args: Namespace) -> AsyncIterator[Optional[EngineClient]]:
# Context manager to handle engine_client lifecycle
# Ensures everything is shutdown and cleaned up on error/exit
engine_args = AsyncEngineArgs.from_cli_args(args)
async with build_async_engine_client_from_engine_args(
engine_args, args.disable_frontend_multiprocessing) as engine:
yield engine
@asynccontextmanager
async def build_async_engine_client_from_engine_args(
engine_args: AsyncEngineArgs,
disable_frontend_multiprocessing: bool = False,
) -> AsyncIterator[Optional[EngineClient]]:
"""
Create EngineClient, either:
- in-process using the AsyncLLMEngine Directly
- multiprocess using AsyncLLMEngine RPC
Returns the Client or None if the creation failed.
"""
# Fall back
# TODO: fill out feature matrix.
if (MQLLMEngineClient.is_unsupported_config(engine_args)
or disable_frontend_multiprocessing):
engine_config = engine_args.create_engine_config()
uses_ray = getattr(AsyncLLMEngine._get_executor_cls(engine_config),
"uses_ray", False)
build_engine = partial(AsyncLLMEngine.from_engine_args,
engine_args=engine_args,
engine_config=engine_config,
usage_context=UsageContext.OPENAI_API_SERVER)
if uses_ray:
# Must run in main thread with ray for its signal handlers to work
engine_client = build_engine()
else:
engine_client = await asyncio.get_running_loop().run_in_executor(
None, build_engine)
yield engine_client
return
# Otherwise, use the multiprocessing AsyncLLMEngine.
else:
if "PROMETHEUS_MULTIPROC_DIR" not in os.environ:
# Make TemporaryDirectory for prometheus multiprocessing
# Note: global TemporaryDirectory will be automatically
# cleaned up upon exit.
global prometheus_multiproc_dir
prometheus_multiproc_dir = tempfile.TemporaryDirectory()
os.environ[
"PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
else:
logger.warning(
"Found PROMETHEUS_MULTIPROC_DIR was set by user. "
"This directory must be wiped between vLLM runs or "
"you will find inaccurate metrics. Unset the variable "
"and vLLM will properly handle cleanup.")
# Select random path for IPC.
ipc_path = get_open_zmq_ipc_path()
logger.info("Multiprocessing frontend to use %s for IPC Path.",
ipc_path)
# Start RPCServer in separate process (holds the LLMEngine).
# the current process might have CUDA context,
# so we need to spawn a new process
context = multiprocessing.get_context("spawn")
engine_process = context.Process(target=run_mp_engine,
args=(engine_args,
UsageContext.OPENAI_API_SERVER,
ipc_path))
engine_process.start()
logger.info("Started engine process with PID %d", engine_process.pid)
# Build RPCClient, which conforms to EngineClient Protocol.
# NOTE: Actually, this is not true yet. We still need to support
# embedding models via RPC (see TODO above)
engine_config = engine_args.create_engine_config()
mp_engine_client = MQLLMEngineClient(ipc_path, engine_config)
try:
while True:
try:
await mp_engine_client.setup()
break
except TimeoutError:
if not engine_process.is_alive():
logger.error("Engine process died before responding "
"to readiness probe")
yield None
return
yield mp_engine_client # type: ignore[misc]
finally:
# Ensure rpc server process was terminated
engine_process.terminate()
# Close all open connections to the backend
mp_engine_client.close()
# Wait for engine process to join
engine_process.join(4)
if engine_process.exitcode is None:
# Kill if taking longer than 5 seconds to stop
engine_process.kill()
# Lazy import for prometheus multiprocessing.
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
# before prometheus_client is imported.
# See https://prometheus.github.io/client_python/multiprocess/
from prometheus_client import multiprocess
multiprocess.mark_process_dead(engine_process.pid)
router = APIRouter()
def mount_metrics(app: FastAPI):
# Lazy import for prometheus multiprocessing.
# We need to set PROMETHEUS_MULTIPROC_DIR environment variable
# before prometheus_client is imported.
# See https://prometheus.github.io/client_python/multiprocess/
from prometheus_client import (CollectorRegistry, make_asgi_app,
multiprocess)
prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None)
if prometheus_multiproc_dir_path is not None:
logger.info("vLLM to use %s as PROMETHEUS_MULTIPROC_DIR",
prometheus_multiproc_dir_path)
registry = CollectorRegistry()
multiprocess.MultiProcessCollector(registry)
# Add prometheus asgi middleware to route /metrics requests
metrics_route = Mount("/metrics", make_asgi_app(registry=registry))
else:
# Add prometheus asgi middleware to route /metrics requests
metrics_route = Mount("/metrics", make_asgi_app())
# Workaround for 307 Redirect for /metrics
metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
app.routes.append(metrics_route)
def chat(request: Request) -> OpenAIServingChat:
return request.app.state.openai_serving_chat
def completion(request: Request) -> OpenAIServingCompletion:
return request.app.state.openai_serving_completion
def tokenization(request: Request) -> OpenAIServingTokenization:
return request.app.state.openai_serving_tokenization
def embedding(request: Request) -> OpenAIServingEmbedding:
return request.app.state.openai_serving_embedding
def engine_client(request: Request) -> EngineClient:
return request.app.state.engine_client
@router.get("/health")
async def health(raw_request: Request) -> Response:
"""Health check."""
await engine_client(raw_request).check_health()
return Response(status_code=200)
@router.post("/tokenize")
async def tokenize(request: TokenizeRequest, raw_request: Request):
generator = await tokenization(raw_request).create_tokenize(request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, TokenizeResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.post("/detokenize")
async def detokenize(request: DetokenizeRequest, raw_request: Request):
generator = await tokenization(raw_request).create_detokenize(request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, DetokenizeResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
@router.get("/v1/models")
async def show_available_models(raw_request: Request):
models = await completion(raw_request).show_available_models()
return JSONResponse(content=models.model_dump())
@router.get("/version")
async def show_version():
ver = {"version": VLLM_VERSION}
return JSONResponse(content=ver)
@router.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest,
raw_request: Request):
generator = await chat(raw_request).create_chat_completion(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, ChatCompletionResponse):
return JSONResponse(content=generator.model_dump())
return StreamingResponse(content=generator, media_type="text/event-stream")
@router.post("/v1/completions")
async def create_completion(request: CompletionRequest, raw_request: Request):
generator = await completion(raw_request).create_completion(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, CompletionResponse):
return JSONResponse(content=generator.model_dump())
return StreamingResponse(content=generator, media_type="text/event-stream")
@router.post("/v1/embeddings")
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
generator = await embedding(raw_request).create_embedding(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
elif isinstance(generator, EmbeddingResponse):
return JSONResponse(content=generator.model_dump())
assert_never(generator)
if envs.VLLM_TORCH_PROFILER_DIR:
logger.warning(
"Torch Profiler is enabled in the API server. This should ONLY be "
"used for local development!")
@router.post("/start_profile")
async def start_profile(raw_request: Request):
logger.info("Starting profiler...")
await engine_client(raw_request).start_profile()
logger.info("Profiler started.")
return Response(status_code=200)
@router.post("/stop_profile")
async def stop_profile(raw_request: Request):
logger.info("Stopping profiler...")
await engine_client(raw_request).stop_profile()
logger.info("Profiler stopped.")
return Response(status_code=200)
if envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING:
logger.warning(
"Lora dynamic loading & unloading is enabled in the API server. "
"This should ONLY be used for local development!")
@router.post("/v1/load_lora_adapter")
async def load_lora_adapter(request: LoadLoraAdapterRequest,
raw_request: Request):
response = await chat(raw_request).load_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(content=response.model_dump(),
status_code=response.code)
response = await completion(raw_request).load_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(content=response.model_dump(),
status_code=response.code)
return Response(status_code=200, content=response)
@router.post("/v1/unload_lora_adapter")
async def unload_lora_adapter(request: UnloadLoraAdapterRequest,
raw_request: Request):
response = await chat(raw_request).unload_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(content=response.model_dump(),
status_code=response.code)
response = await completion(raw_request).unload_lora_adapter(request)
if isinstance(response, ErrorResponse):
return JSONResponse(content=response.model_dump(),
status_code=response.code)
return Response(status_code=200, content=response)
def build_app(args: Namespace) -> FastAPI:
if args.disable_fastapi_docs:
app = FastAPI(openapi_url=None,
docs_url=None,
redoc_url=None,
lifespan=lifespan)
else:
app = FastAPI(lifespan=lifespan)
app.include_router(router)
app.root_path = args.root_path
mount_metrics(app)
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(_, exc):
chat = app.state.openai_serving_chat
err = chat.create_error_response(message=str(exc))
return JSONResponse(err.model_dump(),
status_code=HTTPStatus.BAD_REQUEST)
if token := envs.VLLM_API_KEY or args.api_key:
@app.middleware("http")
async def authentication(request: Request, call_next):
root_path = "" if args.root_path is None else args.root_path
if request.method == "OPTIONS":
return await call_next(request)
if not request.url.path.startswith(f"{root_path}/v1"):
return await call_next(request)
if request.headers.get("Authorization") != "Bearer " + token:
return JSONResponse(content={"error": "Unauthorized"},
status_code=401)
return await call_next(request)
for middleware in args.middleware:
module_path, object_name = middleware.rsplit(".", 1)
imported = getattr(importlib.import_module(module_path), object_name)
if inspect.isclass(imported):
app.add_middleware(imported)
elif inspect.iscoroutinefunction(imported):
app.middleware("http")(imported)
else:
raise ValueError(f"Invalid middleware {middleware}. "
f"Must be a function or a class.")
return app
def init_app_state(
engine_client: EngineClient,
model_config: ModelConfig,
state: State,
args: Namespace,
) -> None:
if args.served_model_name is not None:
served_model_names = args.served_model_name
else:
served_model_names = [args.model]
if args.disable_log_requests:
request_logger = None
else:
request_logger = RequestLogger(max_log_len=args.max_log_len)
state.engine_client = engine_client
state.log_stats = not args.disable_log_stats
state.openai_serving_chat = OpenAIServingChat(
engine_client,
model_config,
served_model_names,
args.response_role,
lora_modules=args.lora_modules,
prompt_adapters=args.prompt_adapters,
request_logger=request_logger,
chat_template=args.chat_template,
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
enable_auto_tools=args.enable_auto_tool_choice,
tool_parser=args.tool_call_parser)
state.openai_serving_completion = OpenAIServingCompletion(
engine_client,
model_config,
served_model_names,
lora_modules=args.lora_modules,
prompt_adapters=args.prompt_adapters,
request_logger=request_logger,
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
)
state.openai_serving_embedding = OpenAIServingEmbedding(
engine_client,
model_config,
served_model_names,
request_logger=request_logger,
)
state.openai_serving_tokenization = OpenAIServingTokenization(
engine_client,
model_config,
served_model_names,
lora_modules=args.lora_modules,
request_logger=request_logger,
chat_template=args.chat_template,
)
async def run_server(args, **uvicorn_kwargs) -> None:
logger.info("vLLM API server version %s", VLLM_VERSION)
logger.info("args: %s", args)
temp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
temp_socket.bind(("", args.port))
def signal_handler(*_) -> None:
# Interrupt server on sigterm while initializing
raise KeyboardInterrupt("terminated")
signal.signal(signal.SIGTERM, signal_handler)
async with build_async_engine_client(args) as engine_client:
# If None, creation of the client failed and we exit.
if engine_client is None:
return
app = build_app(args)
model_config = await engine_client.get_model_config()
init_app_state(engine_client, model_config, app.state, args)
temp_socket.close()
shutdown_task = await serve_http(
app,
host=args.host,
port=args.port,
log_level=args.uvicorn_log_level,
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile,
ssl_ca_certs=args.ssl_ca_certs,
ssl_cert_reqs=args.ssl_cert_reqs,
**uvicorn_kwargs,
)
# NB: Await server shutdown only after the backend context is exited
await shutdown_task
if __name__ == "__main__":
# NOTE(simon):
# This section should be in sync with vllm/scripts.py for CLI entrypoints.
parser = FlexibleArgumentParser(
description="vLLM OpenAI-Compatible RESTful API server.")
parser = make_arg_parser(parser)
args = parser.parse_args()
uvloop.run(run_server(args))