yarongmu-google 7c1f760024
[Kernel][TPU][ragged-paged-attn] vLLM code change for PR#8896 (#15659)
Signed-off-by: Yarong Mu <ymu@google.com>
2025-03-28 21:13:15 -07:00

207 lines
7.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from dataclasses import dataclass
from typing import Any, Optional
import torch
# Required to register custom ops.
import torch_xla.experimental.custom_kernel # noqa: F401
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionLayer, AttentionType)
from vllm.attention.backends.utils import CommonAttentionState
# These are the 2 tunable parameters of the paged attention Pallas kernel.
NUM_QUERIES_PER_BLOCK = 32
NUM_KV_PAGES_PER_BLOCK = 128
class PallasAttentionBackend(AttentionBackend):
@staticmethod
def get_name() -> str:
return "PALLAS_VLLM_V1"
@staticmethod
def get_impl_cls() -> type["PallasAttentionBackendImpl"]:
return PallasAttentionBackendImpl
@staticmethod
def get_metadata_cls() -> type["PallasMetadata"]:
return PallasMetadata
@staticmethod
def get_state_cls() -> type["CommonAttentionState"]:
return CommonAttentionState
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> tuple[int, ...]:
return (num_blocks, block_size, num_kv_heads * 2, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
raise RuntimeError("swap_blocks is not used for the TPU backend.")
@dataclass
class PallasMetadata:
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ---------------------|
# |-- query_len ---|
# Used in the PallasAttentionBackendImpl
slot_mapping: torch.Tensor
block_tables: torch.Tensor
context_lens: torch.Tensor
query_start_loc: torch.Tensor
num_seqs: int
class PallasAttentionBackendImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[dict[str, Any]] = None,
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
) -> None:
if blocksparse_params is not None:
raise ValueError("Paged attention Pallas kernel does "
"not support block-sparse attention.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
if head_size % 128 != 0:
raise NotImplementedError("Head size must be a multiple of 128.")
if alibi_slopes is not None:
raise NotImplementedError("Alibi slopes is not supported.")
if sliding_window is not None:
raise NotImplementedError("Sliding window is not supported.")
if kv_cache_dtype != "auto":
raise NotImplementedError("FP8 KV cache dtype is not supported.")
if blocksparse_params is not None:
raise NotImplementedError("Blocksparse is not supported.")
if logits_soft_cap is not None:
raise NotImplementedError(
"Attention logits soft-capping is not supported.")
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"PallasAttentionBackendImpl")
tpu_version = torch_xla.tpu.version()
if tpu_version < 4:
raise NotImplementedError("TPU version must be 4 or higher.")
# NOTE(chengjiyao): the TPU v4's vmem capacity is 16MB
# TODO(chengjiyao): autotune NUM_QUERIES_PER_BLOCK,
# NUM_KV_PAGES_PER_BLOCK and vmem_limit_bytes
if tpu_version == 4:
self.vmem_limit_bytes = 16 * 1024 * 1024
else:
self.vmem_limit_bytes = 64 * 1024 * 1024
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: PallasMetadata,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with Pallas attention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
# For determine_available_memory case.
if kv_cache.numel() == 0:
if output is None:
output = torch.ones_like(query)
return output
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0
num_tokens, hidden_size = query.shape
query = query.view(num_tokens, self.num_heads, self.head_size)
if kv_cache.numel() > 0:
slot_mapping = attn_metadata.slot_mapping
write_to_kv_cache(key, value, kv_cache, slot_mapping)
output = torch.ops.xla.ragged_paged_attention(
query,
kv_cache,
attn_metadata.context_lens,
attn_metadata.block_tables,
attn_metadata.query_start_loc,
attn_metadata.num_seqs,
num_kv_pages_per_block=NUM_KV_PAGES_PER_BLOCK,
num_queries_per_block=NUM_QUERIES_PER_BLOCK,
vmem_limit_bytes=self.vmem_limit_bytes,
use_kernel=True,
sm_scale=self.scale)
return output.reshape(num_tokens, hidden_size)
def write_to_kv_cache(
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
slot_mapping: torch.Tensor,
) -> None:
""" Write the key and values to the KV cache.
Args:
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
"""
_, _, num_combined_kv_heads, head_size = kv_cache.shape
num_kv_heads = num_combined_kv_heads // 2
key = key.view(-1, num_kv_heads, head_size)
value = value.view(-1, num_kv_heads, head_size)
kv = torch.cat([key, value], axis=-1).reshape(-1, num_combined_kv_heads,
head_size)
torch.ops.xla.dynamo_set_buffer_donor_(kv_cache, True)
kv_cache = kv_cache.flatten(0, 1)
kv_cache.index_copy_(0, slot_mapping, kv)