262 lines
11 KiB
Python
262 lines
11 KiB
Python
"""1D GPT-2 model compatible with HuggingFace weights."""
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import GPT2Config
|
|
|
|
from cacheflow.model_executor.input_metadata import InputMetadata
|
|
from cacheflow.model_executor.layers.attention import GPTCacheFlowAttention
|
|
from cacheflow.model_executor.layers.sampler import Sampler
|
|
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
|
|
load_tensor_parallel_weights)
|
|
from cacheflow.model_executor.parallel_utils.parallel_state import (
|
|
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
|
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
|
|
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
|
|
from cacheflow.sequence import SequenceOutputs
|
|
|
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
|
|
|
|
class GPT2Attention(nn.Module):
|
|
|
|
def __init__(self, config: GPT2Config):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
total_num_heads = config.num_attention_heads
|
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
|
assert total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = total_num_heads // tensor_model_parallel_world_size
|
|
self.head_dim = self.hidden_size // total_num_heads
|
|
self.scale = self.head_dim ** -0.5
|
|
|
|
self.c_attn = ColumnParallelLinear(self.hidden_size, 3 * self.hidden_size, bias=True,
|
|
gather_output=False,
|
|
perform_initialization=False)
|
|
self.c_proj = RowParallelLinear(self.hidden_size, self.hidden_size, bias=True,
|
|
input_is_parallel=True,
|
|
perform_initialization=False)
|
|
self.attn = GPTCacheFlowAttention(scale=self.scale)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
input_metadata: InputMetadata,
|
|
cache_event: Optional[torch.cuda.Event],
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
key_cache, value_cache = kv_cache
|
|
attn_output = self.attn(
|
|
q, k, v, key_cache, value_cache, input_metadata, cache_event)
|
|
attn_output, _ = self.c_proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class GPT2MLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
intermediate_size: int,
|
|
config: GPT2Config,
|
|
):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
self.c_fc = ColumnParallelLinear(hidden_size, intermediate_size,
|
|
bias=True, gather_output=False,
|
|
perform_initialization=False)
|
|
self.c_proj = RowParallelLinear(intermediate_size, hidden_size,
|
|
bias=True, input_is_parallel=True,
|
|
perform_initialization=False)
|
|
|
|
act_fn = config.activation_function
|
|
if act_fn != "gelu_new":
|
|
raise ValueError(f"Unsupported activation: {act_fn}. "
|
|
"GPT-2 only supports gelu_new for now.")
|
|
self.act = torch.nn.GELU(approximate="tanh")
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.c_fc(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states, _ = self.c_proj(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GPT2Block(nn.Module):
|
|
|
|
def __init__(self, config: GPT2Config):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.attn = GPT2Attention(config)
|
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
self.mlp = GPT2MLP(inner_dim, config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
input_metadata: InputMetadata,
|
|
cache_event: Optional[torch.cuda.Event],
|
|
) -> torch.Tensor:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_output = self.attn(
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
input_metadata=input_metadata,
|
|
cache_event=cache_event,
|
|
)
|
|
# residual connection
|
|
hidden_states = attn_output + residual
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.ln_2(hidden_states)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
# residual connection
|
|
hidden_states = residual + feed_forward_hidden_states
|
|
return hidden_states
|
|
|
|
|
|
class GPT2Model(nn.Module):
|
|
|
|
def __init__(self, config: GPT2Config):
|
|
super().__init__()
|
|
self.config = config
|
|
assert config.add_cross_attention == False
|
|
assert config.scale_attn_by_inverse_layer_idx == False
|
|
assert config.reorder_and_upcast_attn == False
|
|
self.embed_dim = config.hidden_size
|
|
|
|
# Optimization: While the vocab size of GPT-2 is 50257, we extend it
|
|
# to 50304 in order to make it divisible by 64.
|
|
# This improves performance since GPUs are faster if the dimension
|
|
# is divisible by 64. In addition, it allows us to shard the embedding
|
|
# layer across 2, 4, 8, or more GPUs.
|
|
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
|
self.wte = VocabParallelEmbedding(vocab_size, self.embed_dim)
|
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
|
self.h = nn.ModuleList(
|
|
[GPT2Block(config) for _ in range(config.num_hidden_layers)])
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
position_ids: torch.LongTensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.wte(input_ids)
|
|
position_embeds = self.wpe(position_ids)
|
|
hidden_states = inputs_embeds + position_embeds
|
|
|
|
for i in range(len(self.h)):
|
|
if cache_events is None:
|
|
cache_event = None
|
|
else:
|
|
cache_event = cache_events[i]
|
|
layer = self.h[i]
|
|
hidden_states = layer(
|
|
hidden_states, kv_caches[i], input_metadata, cache_event)
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GPT2LMHeadModel(nn.Module):
|
|
|
|
def __init__(self, config: GPT2Config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.transformer = GPT2Model(config)
|
|
# TODO(zhuohan): create a new weight after implementing pipeline
|
|
# parallelism
|
|
self.lm_head_weight = self.transformer.wte.weight
|
|
self.sampler = Sampler(config.vocab_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
positions: torch.LongTensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> Dict[int, SequenceOutputs]:
|
|
hidden_states = self.transformer(
|
|
input_ids, positions, kv_caches, input_metadata, cache_events)
|
|
next_tokens = self.sampler(
|
|
self.lm_head_weight, hidden_states, input_metadata)
|
|
return next_tokens
|
|
|
|
_column_parallel_weights = ["wte.weight", "c_fc.weight", "c_fc.bias"]
|
|
_row_parallel_weights = ["c_proj.weight"]
|
|
|
|
def load_weights(self, model_name_or_path: str,
|
|
cache_dir: Optional[str] = None,
|
|
use_np_cache: bool = False):
|
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
|
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
|
state_dict = self.state_dict()
|
|
|
|
for name, loaded_weight in hf_model_weights_iterator(
|
|
model_name_or_path, cache_dir, use_np_cache):
|
|
if "lm_head.weight" in name:
|
|
# GPT-2 ties the weights of the embedding layer and the final
|
|
# linear layer.
|
|
continue
|
|
if ".attn.bias" in name:
|
|
# Skip attention mask.
|
|
# NOTE: "c_attn.bias" should not be skipped.
|
|
continue
|
|
name = "transformer." + name
|
|
|
|
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
|
|
# Because of this, we need to transpose the weights.
|
|
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
|
|
if conv1d_weight_name not in name:
|
|
continue
|
|
if not name.endswith(".weight"):
|
|
continue
|
|
loaded_weight = loaded_weight.t()
|
|
param = state_dict[name]
|
|
|
|
if name == "transformer.wte.weight":
|
|
# Consider padding in the vocab size.
|
|
padded_vocab_size = param.shape[0] * tensor_model_parallel_world_size
|
|
num_extra_rows = padded_vocab_size - self.config.vocab_size
|
|
extra_rows = torch.empty(num_extra_rows, loaded_weight.shape[1])
|
|
extra_rows = extra_rows.to(loaded_weight)
|
|
loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
|
|
|
|
# For the fused QKV linear layer, manually shard the weights.
|
|
if "c_attn" in name:
|
|
# GPT-2's fused QKV has the shape of [3 * num_heads * head_size, hidden_size].
|
|
# When tensor parallelism is used, we shard the weights along the head dimension.
|
|
total_num_heads = self.config.num_attention_heads
|
|
hidden_size = self.config.hidden_size
|
|
head_size = hidden_size // total_num_heads
|
|
num_heads = total_num_heads // tensor_model_parallel_world_size
|
|
head_start = tensor_model_parallel_rank * num_heads
|
|
head_end = (tensor_model_parallel_rank + 1) * num_heads
|
|
|
|
if name.endswith(".weight"):
|
|
loaded_weight = loaded_weight.view(3, total_num_heads, head_size, hidden_size)
|
|
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
|
|
loaded_weight = loaded_weight.reshape(-1, hidden_size)
|
|
elif name.endswith(".bias"):
|
|
loaded_weight = loaded_weight.view(3, total_num_heads, head_size)
|
|
loaded_weight = loaded_weight[:, head_start:head_end, :]
|
|
loaded_weight = loaded_weight.reshape(-1)
|
|
else:
|
|
raise ValueError(f"Unexpected parameter name {name}")
|
|
load_tensor_parallel_weights(param, loaded_weight, name,
|
|
self._column_parallel_weights,
|
|
self._row_parallel_weights,
|
|
tensor_model_parallel_rank)
|