2023-05-09 15:30:12 -07:00

262 lines
11 KiB
Python

"""1D GPT-2 model compatible with HuggingFace weights."""
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn
from transformers import GPT2Config
from cacheflow.model_executor.input_metadata import InputMetadata
from cacheflow.model_executor.layers.attention import GPTCacheFlowAttention
from cacheflow.model_executor.layers.sampler import Sampler
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
load_tensor_parallel_weights)
from cacheflow.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
from cacheflow.sequence import SequenceOutputs
KVCache = Tuple[torch.Tensor, torch.Tensor]
class GPT2Attention(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
self.hidden_size = config.hidden_size
total_num_heads = config.num_attention_heads
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
assert total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = self.hidden_size // total_num_heads
self.scale = self.head_dim ** -0.5
self.c_attn = ColumnParallelLinear(self.hidden_size, 3 * self.hidden_size, bias=True,
gather_output=False,
perform_initialization=False)
self.c_proj = RowParallelLinear(self.hidden_size, self.hidden_size, bias=True,
input_is_parallel=True,
perform_initialization=False)
self.attn = GPTCacheFlowAttention(scale=self.scale)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
key_cache, value_cache = kv_cache
attn_output = self.attn(
q, k, v, key_cache, value_cache, input_metadata, cache_event)
attn_output, _ = self.c_proj(attn_output)
return attn_output
class GPT2MLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPT2Config,
):
super().__init__()
hidden_size = config.hidden_size
self.c_fc = ColumnParallelLinear(hidden_size, intermediate_size,
bias=True, gather_output=False,
perform_initialization=False)
self.c_proj = RowParallelLinear(intermediate_size, hidden_size,
bias=True, input_is_parallel=True,
perform_initialization=False)
act_fn = config.activation_function
if act_fn != "gelu_new":
raise ValueError(f"Unsupported activation: {act_fn}. "
"GPT-2 only supports gelu_new for now.")
self.act = torch.nn.GELU(approximate="tanh")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states
class GPT2Block(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPT2Attention(config)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPT2MLP(inner_dim, config)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
# residual connection
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return hidden_states
class GPT2Model(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
self.config = config
assert config.add_cross_attention == False
assert config.scale_attn_by_inverse_layer_idx == False
assert config.reorder_and_upcast_attn == False
self.embed_dim = config.hidden_size
# Optimization: While the vocab size of GPT-2 is 50257, we extend it
# to 50304 in order to make it divisible by 64.
# This improves performance since GPUs are faster if the dimension
# is divisible by 64. In addition, it allows us to shard the embedding
# layer across 2, 4, 8, or more GPUs.
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.wte = VocabParallelEmbedding(vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.h = nn.ModuleList(
[GPT2Block(config) for _ in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.LongTensor,
position_ids: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
hidden_states, kv_caches[i], input_metadata, cache_event)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class GPT2LMHeadModel(nn.Module):
def __init__(self, config: GPT2Config):
super().__init__()
self.config = config
self.transformer = GPT2Model(config)
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.transformer.wte.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> Dict[int, SequenceOutputs]:
hidden_states = self.transformer(
input_ids, positions, kv_caches, input_metadata, cache_events)
next_tokens = self.sampler(
self.lm_head_weight, hidden_states, input_metadata)
return next_tokens
_column_parallel_weights = ["wte.weight", "c_fc.weight", "c_fc.bias"]
_row_parallel_weights = ["c_proj.weight"]
def load_weights(self, model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False):
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, use_np_cache):
if "lm_head.weight" in name:
# GPT-2 ties the weights of the embedding layer and the final
# linear layer.
continue
if ".attn.bias" in name:
# Skip attention mask.
# NOTE: "c_attn.bias" should not be skipped.
continue
name = "transformer." + name
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
# Because of this, we need to transpose the weights.
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
if conv1d_weight_name not in name:
continue
if not name.endswith(".weight"):
continue
loaded_weight = loaded_weight.t()
param = state_dict[name]
if name == "transformer.wte.weight":
# Consider padding in the vocab size.
padded_vocab_size = param.shape[0] * tensor_model_parallel_world_size
num_extra_rows = padded_vocab_size - self.config.vocab_size
extra_rows = torch.empty(num_extra_rows, loaded_weight.shape[1])
extra_rows = extra_rows.to(loaded_weight)
loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
# For the fused QKV linear layer, manually shard the weights.
if "c_attn" in name:
# GPT-2's fused QKV has the shape of [3 * num_heads * head_size, hidden_size].
# When tensor parallelism is used, we shard the weights along the head dimension.
total_num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // total_num_heads
num_heads = total_num_heads // tensor_model_parallel_world_size
head_start = tensor_model_parallel_rank * num_heads
head_end = (tensor_model_parallel_rank + 1) * num_heads
if name.endswith(".weight"):
loaded_weight = loaded_weight.view(3, total_num_heads, head_size, hidden_size)
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif name.endswith(".bias"):
loaded_weight = loaded_weight.view(3, total_num_heads, head_size)
loaded_weight = loaded_weight[:, head_start:head_end, :]
loaded_weight = loaded_weight.reshape(-1)
else:
raise ValueError(f"Unexpected parameter name {name}")
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)