vllm/cacheflow/model_executor/input_metadata.py
2023-05-09 15:30:12 -07:00

53 lines
2.0 KiB
Python

from typing import List, Dict, Tuple
import torch
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask
from cacheflow.sampling_params import SamplingParams
class InputMetadata:
def __init__(
self,
seq_groups: List[Tuple[List[int], SamplingParams]],
seq_logprobs: Dict[int, float], # Seq id -> cumulative logprobs.
prompt_lens: List[int],
slot_mapping: torch.Tensor,
context_lens: torch.Tensor,
max_context_len: int,
block_tables: torch.Tensor,
) -> None:
self.seq_groups = seq_groups
self.seq_logprobs = seq_logprobs
self.prompt_lens = prompt_lens
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.max_context_len = max_context_len
self.block_tables = block_tables
self.attn_bias = BlockDiagonalCausalMask.from_seqlens(prompt_lens)
self.num_prompts = len(prompt_lens)
self.num_prompt_tokens = sum(prompt_lens)
self.num_generation_tokens = context_lens.shape[0]
self.num_valid_tokens = slot_mapping.shape[0]
if block_tables.numel() > 0:
self.max_num_blocks_per_seq = block_tables.shape[1]
else:
self.max_num_blocks_per_seq = 0
assert block_tables.shape[0] == self.num_generation_tokens
assert context_lens.shape[0] == self.num_generation_tokens
def __repr__(self) -> str:
return (f'InputMetadata('
f'num_valid_tokens={self.num_valid_tokens}, '
f'num_prompt_tokens={self.num_prompt_tokens}, '
f'num_prompts={self.num_prompts}, '
f'prompt_lens={self.prompt_lens}, '
f'num_generation_tokens={self.num_generation_tokens}, '
f'context_lens={self.context_lens}, '
f'max_context_len={self.max_context_len}), '
f'max_num_blocks_per_seq={self.max_num_blocks_per_seq}, '
f'block_tables={self.block_tables}), '
f'slot_mapping={self.slot_mapping}')