245 lines
9.7 KiB
Python
245 lines
9.7 KiB
Python
import asyncio
|
|
import os
|
|
import signal
|
|
import weakref
|
|
from functools import partial
|
|
from typing import Any, List, Optional
|
|
|
|
from vllm.executor.distributed_gpu_executor import ( # yapf: disable
|
|
DistributedGPUExecutor, DistributedGPUExecutorAsync)
|
|
from vllm.executor.gpu_executor import create_worker
|
|
from vllm.executor.multiproc_worker_utils import (ProcessWorkerWrapper,
|
|
ResultHandler, WorkerMonitor)
|
|
from vllm.logger import init_logger
|
|
from vllm.sequence import ExecuteModelRequest, SamplerOutput
|
|
from vllm.triton_utils import maybe_set_triton_cache_manager
|
|
from vllm.utils import (_run_task_with_lock, cuda_device_count_stateless,
|
|
error_on_invalid_device_count_status,
|
|
get_distributed_init_method, get_open_port,
|
|
get_vllm_instance_id, make_async,
|
|
update_environment_variables)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class MultiprocessingGPUExecutor(DistributedGPUExecutor):
|
|
"""Python multiprocessing-based multi-GPU executor"""
|
|
|
|
uses_ray: bool = False
|
|
|
|
def _init_executor(self) -> None:
|
|
# Create the parallel GPU workers.
|
|
world_size = self.parallel_config.world_size
|
|
tensor_parallel_size = self.parallel_config.tensor_parallel_size
|
|
|
|
# Set CUDA_VISIBLE_DEVICES for the driver, inherited by workers
|
|
if "CUDA_VISIBLE_DEVICES" not in os.environ:
|
|
update_environment_variables({
|
|
"CUDA_VISIBLE_DEVICES": (",".join(map(str, range(world_size))))
|
|
})
|
|
|
|
# Ensure that VLLM_INSTANCE_ID is set, to be inherited by workers
|
|
os.environ["VLLM_INSTANCE_ID"] = get_vllm_instance_id()
|
|
|
|
# Disable torch async compiling which won't work with daemonic processes
|
|
os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
|
|
|
|
# Set OMP_NUM_THREADS to 1 if it is not set explicitly, avoids CPU
|
|
# contention amongst the shards
|
|
if "OMP_NUM_THREADS" not in os.environ:
|
|
os.environ["OMP_NUM_THREADS"] = "1"
|
|
|
|
# workaround for https://github.com/vllm-project/vllm/issues/6103
|
|
if world_size > 1:
|
|
maybe_set_triton_cache_manager()
|
|
|
|
cuda_device_count = cuda_device_count_stateless()
|
|
# Use confusing message for more common TP-only case.
|
|
assert tensor_parallel_size <= cuda_device_count, (
|
|
f"please set tensor_parallel_size ({tensor_parallel_size}) "
|
|
f"to less than max local gpu count ({cuda_device_count})")
|
|
|
|
assert world_size <= cuda_device_count, (
|
|
f"please ensure that world_size ({world_size}) "
|
|
f"is less than than max local gpu count ({cuda_device_count})")
|
|
|
|
error_on_invalid_device_count_status()
|
|
|
|
# Multiprocessing-based executor does not support multi-node setting.
|
|
# Since it only works for single node, we can use the loopback address
|
|
# 127.0.0.1 for communication.
|
|
distributed_init_method = get_distributed_init_method(
|
|
"127.0.0.1", get_open_port())
|
|
|
|
self.workers: List[ProcessWorkerWrapper] = []
|
|
# This is the list of workers that are rank 0 of each TP group EXCEPT
|
|
# global rank 0. These are the workers that will broadcast to the
|
|
# rest of the workers.
|
|
self.tp_driver_workers: List[ProcessWorkerWrapper] = []
|
|
# This is the list of workers that are not drivers and not the first
|
|
# worker in a TP group. These are the workers that will be
|
|
# broadcasted to.
|
|
self.non_driver_workers: List[ProcessWorkerWrapper] = []
|
|
|
|
if world_size == 1:
|
|
self.worker_monitor = None
|
|
else:
|
|
result_handler = ResultHandler()
|
|
for rank in range(1, world_size):
|
|
worker = ProcessWorkerWrapper(
|
|
result_handler,
|
|
partial(
|
|
create_worker,
|
|
**self._get_create_worker_kwargs(
|
|
rank=rank,
|
|
local_rank=rank,
|
|
distributed_init_method=distributed_init_method,
|
|
)))
|
|
self.workers.append(worker)
|
|
if rank % tensor_parallel_size == 0:
|
|
self.tp_driver_workers.append(worker)
|
|
else:
|
|
self.non_driver_workers.append(worker)
|
|
|
|
self.worker_monitor = WorkerMonitor(self.workers, result_handler)
|
|
result_handler.start()
|
|
self.worker_monitor.start()
|
|
|
|
# Set up signal handlers to shutdown the executor cleanly
|
|
# sometimes gc does not work well
|
|
|
|
# Use weakref to avoid holding a reference to self
|
|
ref = weakref.ref(self)
|
|
|
|
def shutdown(signum, frame):
|
|
if executor := ref():
|
|
executor.shutdown()
|
|
|
|
signal.signal(signal.SIGINT, shutdown)
|
|
signal.signal(signal.SIGTERM, shutdown)
|
|
|
|
self.driver_worker = self._create_worker(
|
|
distributed_init_method=distributed_init_method)
|
|
self._run_workers("init_device")
|
|
self._run_workers("load_model",
|
|
max_concurrent_workers=self.parallel_config.
|
|
max_parallel_loading_workers)
|
|
|
|
def shutdown(self):
|
|
if (worker_monitor := getattr(self, "worker_monitor",
|
|
None)) is not None:
|
|
worker_monitor.close()
|
|
|
|
def _driver_execute_model(
|
|
self, execute_model_req: Optional[ExecuteModelRequest]
|
|
) -> Optional[List[SamplerOutput]]:
|
|
"""Run execute_model in the driver worker.
|
|
|
|
Passing None will cause the driver to stop the model execution
|
|
loop running in each of the remote workers.
|
|
"""
|
|
return self.driver_worker.execute_model(execute_model_req)
|
|
|
|
def _run_workers(
|
|
self,
|
|
method: str,
|
|
*args,
|
|
async_run_tensor_parallel_workers_only: bool = False,
|
|
max_concurrent_workers: Optional[int] = None,
|
|
**kwargs,
|
|
) -> Any:
|
|
"""Runs the given method on all workers.
|
|
|
|
Args:
|
|
async_run_tensor_parallel_workers_only: If True the method will be
|
|
run only in the remote TP workers, not the driver worker.
|
|
It will also be run asynchronously and return a list of futures
|
|
rather than blocking on the results.
|
|
"""
|
|
|
|
if max_concurrent_workers:
|
|
raise NotImplementedError(
|
|
"max_concurrent_workers is not supported yet.")
|
|
|
|
if async_run_tensor_parallel_workers_only:
|
|
# Run only non-driver workers and just return futures.
|
|
return [
|
|
worker.execute_method(method, *args, **kwargs)
|
|
for worker in self.non_driver_workers
|
|
]
|
|
|
|
# Start all remote workers first.
|
|
worker_outputs = [
|
|
worker.execute_method(method, *args, **kwargs)
|
|
for worker in self.workers
|
|
]
|
|
|
|
driver_worker_method = getattr(self.driver_worker, method)
|
|
driver_worker_output = driver_worker_method(*args, **kwargs)
|
|
|
|
# Get the results of the workers.
|
|
return [driver_worker_output
|
|
] + [output.get() for output in worker_outputs]
|
|
|
|
def check_health(self) -> None:
|
|
"""Raises an error if engine is unhealthy."""
|
|
if self.worker_monitor is not None and not self.worker_monitor.is_alive(
|
|
):
|
|
raise RuntimeError("Worker processes are not running")
|
|
|
|
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
|
|
"""Wait for futures returned from _run_workers() with
|
|
async_run_remote_workers_only to complete."""
|
|
for result in parallel_worker_tasks:
|
|
result.get()
|
|
|
|
|
|
class MultiprocessingGPUExecutorAsync(MultiprocessingGPUExecutor,
|
|
DistributedGPUExecutorAsync):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.driver_exec_model = make_async(self.driver_worker.execute_model)
|
|
self.pp_locks: Optional[List[asyncio.Lock]] = None
|
|
|
|
async def _driver_execute_model_async(
|
|
self,
|
|
execute_model_req: Optional[ExecuteModelRequest] = None
|
|
) -> List[SamplerOutput]:
|
|
if not self.tp_driver_workers:
|
|
return await self.driver_exec_model(execute_model_req)
|
|
|
|
if self.pp_locks is None:
|
|
# This locks each pipeline parallel stage so multiple virtual
|
|
# engines can't execute on the same stage at the same time
|
|
# We create the locks here to avoid creating them in the constructor
|
|
# which uses a different asyncio loop.
|
|
self.pp_locks = [
|
|
asyncio.Lock()
|
|
for _ in range(self.parallel_config.pipeline_parallel_size)
|
|
]
|
|
|
|
tasks = [
|
|
asyncio.create_task(
|
|
_run_task_with_lock(self.driver_exec_model, self.pp_locks[0],
|
|
execute_model_req))
|
|
]
|
|
for pp_rank, driver_worker in enumerate(self.tp_driver_workers,
|
|
start=1):
|
|
tasks.append(
|
|
asyncio.create_task(
|
|
_run_task_with_lock(driver_worker.execute_method_async,
|
|
self.pp_locks[pp_rank],
|
|
"execute_model", execute_model_req)))
|
|
results = await asyncio.gather(*tasks)
|
|
|
|
# Only the last PP stage has the final results.
|
|
return results[-1]
|
|
|
|
async def _start_worker_execution_loop(self):
|
|
coros = [
|
|
worker.execute_method_async("start_worker_execution_loop")
|
|
for worker in self.non_driver_workers
|
|
]
|
|
return await asyncio.gather(*coros)
|