128 lines
5.0 KiB
Python
128 lines
5.0 KiB
Python
import gc
|
|
from dataclasses import fields
|
|
from enum import Enum
|
|
from typing import Any, Dict, List, Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoTokenizer
|
|
|
|
from vllm.config import VisionLanguageConfig
|
|
|
|
|
|
def iter_llava_configs(model_name: str):
|
|
image_hw_to_feature_size = {
|
|
(336, 336): 576,
|
|
}
|
|
|
|
for (h, w), f in image_hw_to_feature_size.items():
|
|
for input_type, input_shape in [
|
|
(VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)),
|
|
(VisionLanguageConfig.ImageInputType.IMAGE_FEATURES, (1, f, 1024)),
|
|
]:
|
|
yield (model_name,
|
|
VisionLanguageConfig(image_input_type=input_type,
|
|
image_feature_size=f,
|
|
image_token_id=32000,
|
|
image_input_shape=input_shape,
|
|
image_processor=model_name,
|
|
image_processor_revision=None))
|
|
|
|
|
|
model_and_vl_config = [
|
|
*iter_llava_configs("llava-hf/llava-1.5-7b-hf"),
|
|
# Not enough memory
|
|
# *iter_llava_configs("llava-hf/llava-1.5-13b-hf"),
|
|
]
|
|
|
|
|
|
def as_dict(vlm_config: VisionLanguageConfig) -> Dict[str, Any]:
|
|
"""Flatten vision language config to pure args.
|
|
|
|
Compatible with what llm entrypoint expects.
|
|
"""
|
|
result = {}
|
|
for field in fields(vlm_config):
|
|
value = getattr(vlm_config, field.name)
|
|
if isinstance(value, Enum):
|
|
result[field.name] = value.name.lower()
|
|
elif isinstance(value, tuple):
|
|
result[field.name] = ",".join([str(item) for item in value])
|
|
else:
|
|
result[field.name] = value
|
|
|
|
result["disable_image_processor"] = vlm_config.image_processor is None
|
|
|
|
return result
|
|
|
|
|
|
def sanitize_vllm_output(vllm_output: Tuple[List[int], str],
|
|
vision_language_config: VisionLanguageConfig,
|
|
model_id: str):
|
|
"""Sanitize vllm output to be comparable with hf output.
|
|
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
|
|
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
|
|
It also reduces `output_str` from "<image><image>bla" to "bla".
|
|
"""
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
image_token_str = tokenizer.decode(vision_language_config.image_token_id)
|
|
image_token_str_len = len(image_token_str)
|
|
input_ids, output_str = vllm_output
|
|
sanitized_input_ids = input_ids[0:2] + input_ids[2 + vision_language_config
|
|
.image_feature_size - 1:]
|
|
sanitzied_output_str = output_str[vision_language_config.
|
|
image_feature_size *
|
|
image_token_str_len:]
|
|
return sanitized_input_ids, sanitzied_output_str
|
|
|
|
|
|
@pytest.mark.parametrize("worker_use_ray", [False])
|
|
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
def test_models(hf_runner, vllm_runner, hf_image_prompts, hf_images,
|
|
vllm_image_prompts, vllm_images, model_and_config, dtype: str,
|
|
max_tokens: int, worker_use_ray: bool) -> None:
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
All the image fixtures for the test is under tests/images.
|
|
For huggingface runner, we provide the PIL images as input.
|
|
For vllm runner, we provide MultiModalData objects and corresponding
|
|
vision language config as input.
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
The text output is sanitized to be able to compare with hf.
|
|
"""
|
|
model_id, vision_language_config = model_and_config
|
|
|
|
hf_model = hf_runner(model_id, dtype=dtype)
|
|
hf_outputs = hf_model.generate_greedy(hf_image_prompts,
|
|
max_tokens,
|
|
images=hf_images)
|
|
del hf_model
|
|
|
|
vllm_model = vllm_runner(model_id,
|
|
dtype=dtype,
|
|
worker_use_ray=worker_use_ray,
|
|
enforce_eager=True,
|
|
**as_dict(vision_language_config))
|
|
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts,
|
|
max_tokens,
|
|
images=vllm_images)
|
|
del vllm_model
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
for i in range(len(hf_image_prompts)):
|
|
hf_output_ids, hf_output_str = hf_outputs[i]
|
|
vllm_output_ids, vllm_output_str = sanitize_vllm_output(
|
|
vllm_outputs[i], vision_language_config, model_id)
|
|
assert hf_output_str == vllm_output_str, (
|
|
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
|
assert hf_output_ids == vllm_output_ids, (
|
|
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|
|
|
|
|
|
# TODO: Add test for `tensor_parallel_size` [ref: PR #3883]
|
|
# (Requires multiple GPUs)
|