Bryan Lu 781d056280
[Feature] Enhance EAGLE Architecture with Proper RMS Norms (#14990)
Signed-off-by: Bryan Lu <yuzhelu@amazon.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-03-26 08:24:07 +00:00

261 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Iterable, Optional, Tuple
import torch
import torch.nn as nn
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models import ModelRegistry
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .utils import maybe_prefix
logger = init_logger(__name__)
class DummyInputLayerNorm(nn.Module):
def __init__(self, weight=None, bias=None):
super().__init__()
self.weight = nn.Parameter(weight) if weight is not None else None
self.bias = nn.Parameter(bias) if bias is not None else None
def forward(self, x):
return x
class DummyOutputNorm(nn.Module):
def forward(self, x, residual):
if residual is None:
return x
else:
return x + residual, None
class EAGLE(nn.Module):
"""This class implements the EAGLE draft model from the paper: https://arxiv.org/pdf/2401.15077
Reference implementation: https://github.com/SafeAILab/EAGLE
Differences from reference implementation:
1. In reference, LlamaDecoderLayer implementation doesn't have
input_layernorm for 1st decoder layer (https://github.com/SafeAILab/EAGLE/blob/7d065d084443fbfd386f88839efd7193c12be869/eagle/model/cnets.py#L427).
Following this approach, our implementation also disables
the input_layernorm for the first decoder layer.
2. We allow any decoder layer to be used in EAGLE whereas in reference
decoder layer is fixed to be LlamaDecoderLayer.
3. We have an optional token_map which reduces draft vocab to most
frequently used tokens to give some additional speed-up by reducing
sampling overhead. This is disabled unless the checkpoint file has
explicit token_map tensor and config has an optional attribute
truncated_vocab_size < vocab_size. To use this technique, one has to find
the top-k most frequent tokens in target dataset and add that as a tensor
in the draft checkpoint (using key token_map). Also, the draft config
needs to have truncated_vocab_size (=k) as an attribute.
4. We allow an enhanced EAGLE architecture similar to the DeepSeek MTP
module with regards to the use of additional RMS norms. The original
EAGLE architecture 1) skips the pre-attention norm in its first
transformer block, and 2) skips the final output norm, both of which we
found to be suboptimal. We also add the support for separate norms
applying to both the token embedding and hidden states before projection
as in DeepSeek MTP, which we found to improve performance as well.
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.config = config
architectures = getattr(self.config.model, "architectures", [])
model_cls, _ = ModelRegistry.resolve_model_cls(architectures)
self.model = model_cls(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.fc = nn.Linear(config.model.hidden_size * 2,
config.model.hidden_size,
bias=getattr(self.config, "eagle_fc_bias", False))
# Modify layer normalization and residual connections as suggested
# in the EAGLE framework: https://github.com/SafeAILab/EAGLE
# While weights and biases are generally not needed,
# they are retained here to support certain unit tests
# (e.g., spec_decode/e2e/test_eagle_correctness.py).
if not hasattr(self.config.model,
"skip_prenorm") or self.config.model.skip_prenorm:
self.model.model.layers[0].input_layernorm = DummyInputLayerNorm(
weight=self.model.model.layers[0].input_layernorm.weight)
if not hasattr(
self.config.model,
"skip_output_norm") or self.config.model.skip_output_norm:
self.model.model.norm = DummyOutputNorm()
self.add_para_norm = False
if hasattr(self.config.model,
"add_para_norm") and self.config.model.add_para_norm:
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.add_para_norm = True
self.orig_vocab_size = config.vocab_size
self.truncated_vocab_size = config.truncated_vocab_size
self.unpadded_vocab_size = self.truncated_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=self.truncated_vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
)
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
self.truncated_vocab_size,
logit_scale)
# Token map is a idx to token mapping to reduce the vocab size for
# the draft model. Using smaller vocab size for draft, containing
# only most frequent tokens reduces the speculation overhead. This
# doesn't affect the acceptance rate much and thus gives more speed
# -up. By default, this is disabled and is only used if the EAGLE
# checkpoint file has token_map tensor.
self.token_map = None
@property
def sampler(self):
return self.model.sampler
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
previous_hidden_states: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(input_ids)
if self.add_para_norm:
inputs_embeds = torch.cat([
self.enorm(inputs_embeds),
self.hnorm(previous_hidden_states)
],
dim=-1)
else:
inputs_embeds = torch.cat([inputs_embeds, previous_hidden_states],
dim=-1)
inputs_embeds = self.fc(inputs_embeds)
inputs_embeds[positions == 0] = 0 # masking inputs at position=0
hidden_states = self.model.model(
input_ids=None,
inputs_embeds=inputs_embeds,
positions=positions,
intermediate_tensors=intermediate_tensors,
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
if self.token_map is not None:
_logits = logits
logits = -torch.inf * torch.ones(
size=(*_logits.shape[:-1], self.orig_vocab_size),
device=_logits.device,
dtype=_logits.dtype)
logits[..., self.token_map] = _logits
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
# This implementation is incompitable with https://huggingface.co/yuhuili/EAGLE-LLaMA3-Instruct-8B
# due to missing lm_head weights and its config being that of a
# Llama model. Here's a compatible version with the same weights:
# https://huggingface.co/abhigoyal/EAGLE-LLaMA3-Instruct-8B-vllm
# Also, here's an example script for converting trained EAGLE
# checkpoint to vLLM compatible version: https://gist.github.com/abhigoyal1997/1e7a4109ccb7704fbc67f625e86b2d6d
model_weights = {}
for name, loaded_weight in weights:
if name == "token_map":
if self.config.truncated_vocab_size < self.config.vocab_size:
self.token_map = nn.Parameter(loaded_weight,
requires_grad=False)
elif name.startswith("fc.weight"):
weight_loader = getattr(self.fc.weight, "weight_loader",
default_weight_loader)
weight_loader(self.fc.weight, loaded_weight)
elif name.startswith("fc.bias"):
if self.fc.bias is not None:
weight_loader = getattr(self.fc.bias, "weight_loader",
default_weight_loader)
weight_loader(self.fc.bias, loaded_weight)
else:
logger.warning_once("Found bias in the loaded weights but "
"the model config doesn't have bias.")
elif name.startswith("enorm.weight"):
weight_loader = getattr(self.enorm.weight, "weight_loader",
default_weight_loader)
weight_loader(self.enorm.weight, loaded_weight)
elif name.startswith("hnorm.weight"):
weight_loader = getattr(self.hnorm.weight, "weight_loader",
default_weight_loader)
weight_loader(self.hnorm.weight, loaded_weight)
elif name.startswith("model.lm_head.") or name.startswith(
"model.model."):
model_weights[name.split("model.", 1)[-1]] = loaded_weight
elif name.startswith("lm_head.") or name.startswith("model."):
model_weights[name] = loaded_weight
else:
model_weights[f"model.{name}"] = loaded_weight
if "lm_head.weight" in model_weights:
lm_head_weight = model_weights.pop("lm_head.weight")
if self.token_map is not None and\
lm_head_weight.shape[0] > self.token_map.shape[0]:
lm_head_weight = lm_head_weight[self.token_map]
else:
# NOTE(Shangming): initialize the placeholder for lm_head weight.
lm_head_weight = torch.zeros(
self.lm_head.org_vocab_size,
self.lm_head.embedding_dim,
dtype=self.config.torch_dtype,
)
weight_loader = getattr(self.lm_head.weight, "weight_loader",
default_weight_loader)
weight_loader(self.lm_head.weight, lm_head_weight)
self.model.load_weights(model_weights.items())