Kunshang Ji 96b6f475dd
Remove hardcoded device="cuda" to support more devices (#2503)
Co-authored-by: Jiang Li <jiang1.li@intel.com>
Co-authored-by: Kunshang Ji <kunshang.ji@intel.com>
2024-02-01 15:46:39 -08:00

179 lines
5.8 KiB
Python

import torch
from typing import List, Optional, Dict
from vllm.worker.worker import Worker
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
from vllm.engine.arg_utils import EngineArgs
from vllm.sequence import SequenceGroupMetadata, SequenceData
from vllm.sampling_params import SamplingParams
from vllm.worker.cache_engine import CacheEngine
from vllm.model_executor.utils import set_random_seed
from dataclasses import dataclass, fields
@dataclass
class ExecuteModelData:
"""Helper data structure which facilitates cleaner tests.
"""
seq_group_metadata_list: List[SequenceGroupMetadata]
blocks_to_swap_in: Dict[int, int]
blocks_to_swap_out: Dict[int, int]
blocks_to_copy: Dict[int, List[int]]
def to_dict(self):
return dict(
(field.name, getattr(self, field.name)) for field in fields(self))
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size
def create_execute_model_data(
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Optional[Dict[int, int]] = None,
blocks_to_swap_out: Optional[Dict[int, int]] = None,
blocks_to_copy: Optional[Dict[int, int]] = None,
) -> ExecuteModelData:
if blocks_to_swap_in is None:
blocks_to_swap_in = {}
if blocks_to_swap_out is None:
blocks_to_swap_out = {}
if blocks_to_copy is None:
blocks_to_copy = {}
return ExecuteModelData(
seq_group_metadata_list=seq_group_metadata_list,
blocks_to_swap_in=blocks_to_swap_in,
blocks_to_swap_out=blocks_to_swap_out,
blocks_to_copy=blocks_to_copy,
)
def patch_execute_model_with_seeds(worker: Worker, rand_seeds: List[int]):
seed_iter = iter(rand_seeds)
original_execute_model = worker.execute_model
def new_execute_model(*args, **kwargs):
result = original_execute_model(*args, **kwargs)
set_random_seed(next(seed_iter))
return result
return new_execute_model
def zero_kv_cache(cache_engine: CacheEngine):
assert cache_engine.gpu_cache
for key_blocks, value_blocks in cache_engine.gpu_cache:
key_blocks.zero_()
value_blocks.zero_()
def create_worker(cls: type,
model_name: str,
block_size: int,
num_gpu_blocks: int,
seed: int,
is_driver_worker: bool = True,
enforce_eager: bool = True):
engine_args = EngineArgs(
model=model_name,
seed=seed,
block_size=block_size,
enforce_eager=enforce_eager,
)
(model_config, cache_config, parallel_config, scheduler_config,
device_config, _) = engine_args.create_engine_configs()
distributed_init_method = get_distributed_init_method(
get_ip(), get_open_port())
worker = cls(
model_config=model_config,
parallel_config=parallel_config,
scheduler_config=scheduler_config,
device_config=device_config,
local_rank=0,
rank=0,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker,
)
worker.init_model()
worker.load_model()
cache_config.num_gpu_blocks = num_gpu_blocks
cache_config.num_cpu_blocks = 0
worker.init_cache_engine(cache_config)
worker.warm_up_model()
return worker
def create_seq_group_metadata_from_prompts(
prompts: List[List[int]],
num_gpu_blocks: int,
block_size: int,
final_seq_lens: List[int],
continuations: Optional[List[List[int]]] = None,
num_tokens_processed: Optional[List[int]] = None,
seq_ids: Optional[List[int]] = None,
) -> List[SequenceGroupMetadata]:
if continuations is None:
continuations = [[] for _ in prompts]
if num_tokens_processed is None:
# Default to 1 token missing from kv cache for generation sequences.
num_tokens_processed = []
for continuation, prompt in zip(continuations, prompts):
# If prefill, then default to zero tokens processed.
if not continuation:
num_tokens_processed.append(0)
else:
# If generation, then default to all but one tokens processed.
num_tokens_processed.append(
len(continuation) + len(prompt) - 1)
if seq_ids is None:
seq_ids = list(i for i, _ in enumerate(prompts))
free_gpu_blocks = list(range(num_gpu_blocks))
block_allocations = {
i: [
free_gpu_blocks.pop()
for _ in range(round_up_to_next_block(final_len, block_size))
]
for i, final_len in enumerate(final_seq_lens)
}
return [
SequenceGroupMetadata(
request_id=str(i),
is_prompt=len(cont_token_ids) == 0,
seq_data={
i:
SequenceData(prompt_token_ids=prompt_token_ids[:] +
cont_token_ids[:])
},
sampling_params=SamplingParams(temperature=0.0, ),
block_tables={i: block_allocations[i][:]},
) for i, (prompt_token_ids, cont_token_ids, num_tokens_saved) in
enumerate(zip(prompts, continuations, num_tokens_processed))
]
def assert_logprobs_dict_allclose(
actual_logprobs: List[Dict[int, float]],
expected_logprobs: List[Dict[int, float]]) -> None:
for single_step_actual_logprobs, single_step_expected_logprobs in zip(
actual_logprobs, expected_logprobs):
assert set(single_step_actual_logprobs.keys()) == set(
single_step_expected_logprobs.keys())
for token_id in single_step_actual_logprobs:
actual = torch.tensor(single_step_actual_logprobs[token_id])
expected = torch.tensor(single_step_expected_logprobs[token_id])
assert torch.allclose(actual, expected)