131 lines
4.2 KiB
Python
131 lines
4.2 KiB
Python
from typing import List, Optional, Tuple, Union
|
|
|
|
try:
|
|
import ray
|
|
except ImportError:
|
|
ray = None
|
|
|
|
from cacheflow.core.scheduler import Scheduler
|
|
from cacheflow.worker.worker import Worker
|
|
|
|
|
|
DeviceID = Tuple[int, str, int] # rank, node resource (node IP), device id
|
|
|
|
|
|
class Controller:
|
|
|
|
def __init__(
|
|
self,
|
|
stage_id: int,
|
|
stage_devices: List[DeviceID],
|
|
world_size: int,
|
|
tensor_parallel_size: int,
|
|
pipeline_parallel_size: int,
|
|
distributed_init_method: str,
|
|
model_name: str,
|
|
dtype: str,
|
|
seed: int,
|
|
cache_dir: Optional[str],
|
|
use_dummy_weights: bool,
|
|
use_np_cache: bool,
|
|
max_num_batched_tokens: int,
|
|
max_num_sequences: int,
|
|
use_ray: bool,
|
|
) -> None:
|
|
self.stage_id = stage_id
|
|
self.stage_devices = stage_devices
|
|
self.model_name = model_name
|
|
self.use_ray = use_ray
|
|
|
|
# Which pipeline stage is this node assigned to?
|
|
self.is_first_stage = stage_id == 0
|
|
self.is_last_stage = False
|
|
|
|
self.workers: List[Worker] = []
|
|
for rank, node_resource, device_id in stage_devices:
|
|
if self.use_ray:
|
|
worker_cls = ray.remote(num_cpus=0,
|
|
num_gpus=1,
|
|
resources={node_resource: 1e-5})(Worker).remote
|
|
else:
|
|
worker_cls = Worker
|
|
worker = worker_cls(
|
|
model_name=model_name,
|
|
dtype=dtype,
|
|
seed=seed,
|
|
distributed_init_method=distributed_init_method,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
pipeline_parallel_size=pipeline_parallel_size,
|
|
cache_dir=cache_dir,
|
|
use_dummy_weights=use_dummy_weights,
|
|
use_np_cache=use_np_cache,
|
|
max_num_batched_tokens=max_num_batched_tokens,
|
|
max_num_sequences=max_num_sequences,
|
|
)
|
|
self.workers.append(worker)
|
|
|
|
def get_num_available_blocks(self, block_size: int, cpu_swap_space: int,
|
|
gpu_memory_utilization: float) -> List[Tuple[int, int]]:
|
|
all_worker_results = []
|
|
for worker in self.workers:
|
|
executor = worker.get_num_available_blocks
|
|
if self.use_ray:
|
|
executor = executor.remote
|
|
|
|
result = executor(
|
|
block_size,
|
|
cpu_swap_space,
|
|
gpu_memory_utilization,
|
|
)
|
|
all_worker_results.append(result)
|
|
if self.use_ray:
|
|
all_worker_results = ray.get(all_worker_results)
|
|
return all_worker_results
|
|
|
|
def init_cache_engine(self, block_size: int, num_gpu_blocks: int,
|
|
num_cpu_blocks: int):
|
|
all_worker_futures = []
|
|
for worker in self.workers:
|
|
executor = worker.init_cache_engine
|
|
if self.use_ray:
|
|
executor = executor.remote
|
|
future = executor(
|
|
block_size,
|
|
num_gpu_blocks,
|
|
num_cpu_blocks,
|
|
)
|
|
all_worker_futures.append(future)
|
|
if self.use_ray:
|
|
ray.get(all_worker_futures)
|
|
|
|
def set_next(
|
|
self,
|
|
next_node: Union['Controller', 'Scheduler'],
|
|
) -> None:
|
|
self.next_node = next_node
|
|
self.is_last_stage = isinstance(next_node, Scheduler)
|
|
|
|
def execute_stage(self, *args, **kwargs) -> None:
|
|
all_outputs = []
|
|
for worker in self.workers:
|
|
executor = (worker.execute_stage.remote
|
|
if self.use_ray else worker.execute_stage)
|
|
output = executor(*args, **kwargs)
|
|
all_outputs.append(output)
|
|
|
|
if self.use_ray:
|
|
all_outputs = ray.get(all_outputs)
|
|
|
|
# Make sure all workers have the same results.
|
|
output = all_outputs[0]
|
|
for other_output in all_outputs[1:]:
|
|
assert output == other_output
|
|
|
|
if self.is_last_stage:
|
|
self.next_node.post_step(output)
|
|
else:
|
|
# TODO: Support pipeline parallelism.
|
|
assert False
|