785 lines
31 KiB
Python
785 lines
31 KiB
Python
"""Attention layer with FlashAttention."""
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionMetadata,
|
|
AttentionMetadataBuilder,
|
|
AttentionType)
|
|
from vllm.attention.backends.utils import (PAD_SLOT_ID, CommonAttentionState,
|
|
compute_slot_mapping,
|
|
compute_slot_mapping_start_idx,
|
|
is_block_tables_empty)
|
|
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.worker.model_runner import (ModelInputForGPUBuilder,
|
|
ModelInputForGPUWithSamplingMetadata)
|
|
|
|
# yapf: disable
|
|
from vllm.vllm_flash_attn import (
|
|
flash_attn_varlen_func as _flash_attn_varlen_func)
|
|
from vllm.vllm_flash_attn import (
|
|
flash_attn_with_kvcache as _flash_attn_with_kvcache)
|
|
|
|
# yapf: enable
|
|
|
|
|
|
@torch.library.custom_op("vllm::flash_attn_varlen_func", mutates_args=[])
|
|
def flash_attn_varlen_func(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
cu_seqlens_q: torch.Tensor,
|
|
cu_seqlens_k: torch.Tensor,
|
|
max_seqlen_q: int,
|
|
max_seqlen_k: int,
|
|
softmax_scale: Optional[float] = None,
|
|
causal: bool = False,
|
|
window_size: Optional[List[int]] = None,
|
|
softcap: float = 0.0,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
block_table: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
# custom op does not support tuple input
|
|
real_window_size: Tuple[int, int]
|
|
if window_size is None:
|
|
real_window_size = (-1, -1)
|
|
else:
|
|
assert len(window_size) == 2
|
|
real_window_size = (window_size[0], window_size[1])
|
|
return _flash_attn_varlen_func(
|
|
q=q,
|
|
k=k,
|
|
v=v,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_q,
|
|
max_seqlen_k=max_seqlen_k,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
window_size=real_window_size,
|
|
softcap=softcap,
|
|
alibi_slopes=alibi_slopes,
|
|
block_table=block_table,
|
|
)
|
|
|
|
|
|
@flash_attn_varlen_func.register_fake # type: ignore
|
|
def _(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
cu_seqlens_q: torch.Tensor,
|
|
cu_seqlens_k: torch.Tensor,
|
|
max_seqlen_q: int,
|
|
max_seqlen_k: int,
|
|
softmax_scale: Optional[float] = None,
|
|
causal: bool = False,
|
|
window_size: Optional[List[int]] = None,
|
|
softcap: float = 0.0,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
block_table: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
return torch.empty_like(q)
|
|
|
|
|
|
@torch.library.custom_op("vllm::flash_attn_with_kvcache", mutates_args=[])
|
|
def flash_attn_with_kvcache(
|
|
decode_query: torch.Tensor,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
cache_seqlens: Optional[torch.Tensor] = None,
|
|
block_table: Optional[torch.Tensor] = None,
|
|
softmax_scale: Optional[float] = None,
|
|
causal: bool = False,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
softcap: float = 0.0,
|
|
) -> torch.Tensor:
|
|
return _flash_attn_with_kvcache(
|
|
decode_query,
|
|
key_cache,
|
|
value_cache,
|
|
cache_seqlens=cache_seqlens,
|
|
block_table=block_table,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
alibi_slopes=alibi_slopes,
|
|
softcap=softcap,
|
|
)
|
|
|
|
|
|
@flash_attn_with_kvcache.register_fake # type: ignore
|
|
def _(
|
|
decode_query: torch.Tensor,
|
|
key_cache: torch.Tensor,
|
|
value_cache: torch.Tensor,
|
|
cache_seqlens: Optional[torch.Tensor] = None,
|
|
block_table: Optional[torch.Tensor] = None,
|
|
softmax_scale: Optional[float] = None,
|
|
causal: bool = False,
|
|
alibi_slopes: Optional[torch.Tensor] = None,
|
|
softcap: float = 0.0,
|
|
) -> torch.Tensor:
|
|
return torch.empty_like(decode_query)
|
|
|
|
|
|
@torch.library.custom_op("vllm::reshape_and_cache_flash",
|
|
mutates_args=["kv_cache"])
|
|
def reshape_and_cache_flash(
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
slot_mapping: torch.Tensor,
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
) -> None:
|
|
"""Inductor cannot deal with inplace operations on views.
|
|
See https://github.com/pytorch/pytorch/issues/131192
|
|
and https://github.com/pytorch/pytorch/issues/130174
|
|
This is a workaround to hide the view operation from the inductor.
|
|
"""
|
|
return torch.ops._C_cache_ops.reshape_and_cache_flash(
|
|
key, value, kv_cache[0], kv_cache[1], slot_mapping, kv_cache_dtype,
|
|
k_scale, v_scale)
|
|
|
|
|
|
@reshape_and_cache_flash.register_fake # type: ignore
|
|
def _(
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
slot_mapping: torch.Tensor,
|
|
kv_cache_dtype: str,
|
|
k_scale: float,
|
|
v_scale: float,
|
|
) -> None:
|
|
pass
|
|
|
|
|
|
class FlashAttentionBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_supported_head_sizes() -> List[int]:
|
|
return [32, 64, 96, 128, 160, 192, 224, 256]
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "flash-attn"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> Type["FlashAttentionImpl"]:
|
|
return FlashAttentionImpl
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> Type["AttentionMetadata"]:
|
|
return FlashAttentionMetadata
|
|
|
|
@staticmethod
|
|
def get_builder_cls() -> Type["FlashAttentionMetadataBuilder"]:
|
|
return FlashAttentionMetadataBuilder
|
|
|
|
@staticmethod
|
|
def get_state_cls() -> Type["CommonAttentionState"]:
|
|
return CommonAttentionState
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
if block_size % 16 != 0:
|
|
raise ValueError("Block size must be a multiple of 16.")
|
|
return (2, num_blocks, block_size, num_kv_heads, head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: torch.Tensor,
|
|
) -> None:
|
|
src_key_cache = src_kv_cache[0]
|
|
dst_key_cache = dst_kv_cache[0]
|
|
ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
|
|
|
|
src_value_cache = src_kv_cache[1]
|
|
dst_value_cache = dst_kv_cache[1]
|
|
ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
|
|
|
|
@staticmethod
|
|
def copy_blocks(
|
|
kv_caches: List[torch.Tensor],
|
|
src_to_dists: torch.Tensor,
|
|
) -> None:
|
|
key_caches = [kv_cache[0] for kv_cache in kv_caches]
|
|
value_caches = [kv_cache[1] for kv_cache in kv_caches]
|
|
ops.copy_blocks(key_caches, value_caches, src_to_dists)
|
|
|
|
|
|
@dataclass
|
|
class FlashAttentionMetadata(AttentionMetadata):
|
|
"""Metadata for FlashAttentionBackend.
|
|
|
|
NOTE: Any python object stored here is not updated when it is
|
|
cuda-graph replayed. If you have values that need to be changed
|
|
dynamically, it should be stored in tensor. The tensor has to be
|
|
updated from `CUDAGraphRunner.forward` API.
|
|
"""
|
|
# (batch_size,). The sequence length per sequence. Sequence length means
|
|
# the computed tokens + new tokens None if it is a decoding.
|
|
seq_lens: Optional[List[int]]
|
|
# seq_lens stored as a tensor.
|
|
seq_lens_tensor: Optional[torch.Tensor]
|
|
|
|
# NOTE(sang): Definition of context_len, query_len, and seq_len.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seq_len ---------------------|
|
|
# |-- query_len ---|
|
|
|
|
# Maximum query length in the batch. None for decoding.
|
|
max_query_len: Optional[int]
|
|
# Maximum sequence length among prefill batch. 0 if there are decoding
|
|
# requests only.
|
|
max_prefill_seq_len: int
|
|
# Maximum sequence length among decode batch. 0 if there are prefill
|
|
# requests only.
|
|
max_decode_seq_len: int
|
|
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
|
# the batch, used to index into subquery. E.g., if the subquery length
|
|
# is [4, 6], it is [0, 4, 10].
|
|
query_start_loc: Optional[torch.Tensor]
|
|
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
|
# the batch, used to index into sequence. E.g., if the sequence length is
|
|
# [4, 6], it is [0, 4, 10].
|
|
seq_start_loc: Optional[torch.Tensor]
|
|
# (batch_size,) A tensor of context lengths (tokens that are computed
|
|
# so far).
|
|
context_lens_tensor: Optional[torch.Tensor]
|
|
|
|
# (batch_size, max_blocks_per_seq).
|
|
# Block addresses per sequence. (Seq id -> list of physical block)
|
|
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
|
|
# in the kv cache. Each block can contain up to block_size tokens.
|
|
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
|
|
# captured.
|
|
block_tables: Optional[torch.Tensor]
|
|
|
|
# Whether or not if cuda graph is enabled.
|
|
# Cuda-graph is currently enabled for decoding only.
|
|
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
|
use_cuda_graph: bool
|
|
|
|
_cached_prefill_metadata: Optional["FlashAttentionMetadata"] = None
|
|
_cached_decode_metadata: Optional["FlashAttentionMetadata"] = None
|
|
|
|
@property
|
|
def prefill_metadata(self) -> Optional["FlashAttentionMetadata"]:
|
|
if self.num_prefills == 0:
|
|
return None
|
|
|
|
if self._cached_prefill_metadata is not None:
|
|
return self._cached_prefill_metadata
|
|
|
|
assert self.seq_lens is not None
|
|
assert self.seq_lens_tensor is not None
|
|
assert self.query_start_loc is not None
|
|
assert self.context_lens_tensor is not None
|
|
assert self.block_tables is not None
|
|
assert self.seq_start_loc is not None
|
|
|
|
self._cached_prefill_metadata = FlashAttentionMetadata(
|
|
num_prefills=self.num_prefills,
|
|
num_prefill_tokens=self.num_prefill_tokens,
|
|
num_decode_tokens=0,
|
|
slot_mapping=self.slot_mapping[:self.num_prefill_tokens],
|
|
seq_lens=self.seq_lens[:self.num_prefills],
|
|
seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills],
|
|
max_query_len=self.max_query_len,
|
|
max_prefill_seq_len=self.max_prefill_seq_len,
|
|
max_decode_seq_len=0,
|
|
query_start_loc=self.query_start_loc[:self.num_prefills + 1],
|
|
seq_start_loc=self.seq_start_loc[:self.num_prefills + 1],
|
|
context_lens_tensor=self.context_lens_tensor[:self.num_prefills],
|
|
block_tables=self.block_tables[:self.num_prefills],
|
|
use_cuda_graph=False,
|
|
)
|
|
return self._cached_prefill_metadata
|
|
|
|
@property
|
|
def decode_metadata(self) -> Optional["FlashAttentionMetadata"]:
|
|
if self.num_decode_tokens == 0:
|
|
return None
|
|
|
|
if self._cached_decode_metadata is not None:
|
|
return self._cached_decode_metadata
|
|
assert self.block_tables is not None
|
|
assert self.seq_lens_tensor is not None
|
|
|
|
self._cached_decode_metadata = FlashAttentionMetadata(
|
|
num_prefills=0,
|
|
num_prefill_tokens=0,
|
|
num_decode_tokens=self.num_decode_tokens,
|
|
slot_mapping=self.slot_mapping[self.num_prefill_tokens:],
|
|
seq_lens=None,
|
|
seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:],
|
|
max_query_len=None,
|
|
max_prefill_seq_len=0,
|
|
max_decode_seq_len=self.max_decode_seq_len,
|
|
query_start_loc=None,
|
|
seq_start_loc=None,
|
|
context_lens_tensor=None,
|
|
block_tables=self.block_tables[self.num_prefills:],
|
|
use_cuda_graph=self.use_cuda_graph,
|
|
)
|
|
return self._cached_decode_metadata
|
|
|
|
def advance_step(self, model_input: "ModelInputForGPUWithSamplingMetadata",
|
|
sampled_token_ids: Optional[torch.Tensor],
|
|
block_size: int, num_seqs: int, num_queries: int):
|
|
"""
|
|
Update metadata in-place to advance one decode step.
|
|
"""
|
|
# When using cudagraph, the num_seqs is padded to the next captured
|
|
# batch sized, but num_queries tracks the actual number of requests in
|
|
# the batch. For --enforce-eager mode, num_seqs == num_queries
|
|
if num_seqs != num_queries:
|
|
assert num_seqs > num_queries
|
|
assert self.use_cuda_graph
|
|
|
|
assert self.num_prefills == 0
|
|
assert self.num_prefill_tokens == 0
|
|
assert self.num_decode_tokens == num_seqs
|
|
assert self.slot_mapping.shape == (num_seqs, )
|
|
|
|
assert self.seq_lens is not None
|
|
assert len(self.seq_lens) == num_seqs
|
|
assert self.seq_lens_tensor is not None
|
|
assert self.seq_lens_tensor.shape == (num_seqs, )
|
|
assert self.max_query_len == 1
|
|
assert self.max_prefill_seq_len == 0
|
|
assert self.max_decode_seq_len == max(self.seq_lens)
|
|
|
|
assert self.query_start_loc is not None
|
|
assert self.query_start_loc.shape == (num_queries + 1, )
|
|
assert self.seq_start_loc is not None
|
|
assert self.seq_start_loc.shape == (num_seqs + 1, )
|
|
|
|
assert self.context_lens_tensor is not None
|
|
assert self.context_lens_tensor.shape == (num_queries, )
|
|
|
|
assert self.block_tables is not None
|
|
assert self.block_tables.shape[0] == num_seqs
|
|
|
|
# Update query lengths. Note that we update only queries and not seqs,
|
|
# since tensors may be padded due to captured cuda graph batch size
|
|
for i in range(num_queries):
|
|
self.seq_lens[i] += 1
|
|
self.max_decode_seq_len = max(self.seq_lens)
|
|
|
|
ops.advance_step_flashattn(num_seqs=num_seqs,
|
|
num_queries=num_queries,
|
|
block_size=block_size,
|
|
input_tokens=model_input.input_tokens,
|
|
sampled_token_ids=sampled_token_ids,
|
|
input_positions=model_input.input_positions,
|
|
seq_lens=self.seq_lens_tensor,
|
|
slot_mapping=self.slot_mapping,
|
|
block_tables=self.block_tables)
|
|
|
|
|
|
class FlashAttentionMetadataBuilder(
|
|
AttentionMetadataBuilder[FlashAttentionMetadata]):
|
|
|
|
def __init__(self, input_builder: "ModelInputForGPUBuilder"):
|
|
self.slot_mapping: List[int] = []
|
|
self.prefill_seq_lens: List[int] = []
|
|
self.context_lens: List[int] = []
|
|
self.block_tables: List[List[int]] = []
|
|
self.curr_seq_lens: List[int] = []
|
|
self.num_prefills = 0
|
|
self.num_prefill_tokens = 0
|
|
self.num_decode_tokens = 0
|
|
self.has_prefix_cache_hit = False
|
|
|
|
self.input_builder = input_builder
|
|
self.runner = input_builder.runner
|
|
self.sliding_window = input_builder.sliding_window
|
|
self.block_size = input_builder.block_size
|
|
self.use_v2_block_manager = (
|
|
input_builder.scheduler_config.use_v2_block_manager)
|
|
|
|
def _add_seq_group(
|
|
self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
|
|
chunked_prefill_enabled: bool, prefix_cache_hit: bool):
|
|
"""Add a sequence group to the metadata. Specifically update/append
|
|
1. context length.
|
|
2. block table.
|
|
3. slot mapping.
|
|
"""
|
|
is_prompt = inter_data.is_prompt
|
|
block_tables = inter_data.block_tables
|
|
|
|
for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
|
|
curr_sliding_window_block) in zip(
|
|
inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
|
|
inter_data.orig_seq_lens, inter_data.seq_lens,
|
|
inter_data.query_lens, inter_data.context_lens,
|
|
inter_data.curr_sliding_window_blocks):
|
|
self.context_lens.append(context_len)
|
|
|
|
if is_prompt:
|
|
self.num_prefills += 1
|
|
self.num_prefill_tokens += token_len
|
|
self.prefill_seq_lens.append(seq_len)
|
|
else:
|
|
assert query_len == 1, (
|
|
"seq_len: {}, context_len: {}, query_len: {}".format(
|
|
seq_len, context_len, query_len))
|
|
self.num_decode_tokens += query_len
|
|
self.curr_seq_lens.append(curr_seq_len)
|
|
|
|
# Compute block table.
|
|
# TODO(sang): Combine chunked prefill and prefix caching by
|
|
# only allowing multiple of block_size chunk size.
|
|
# NOTE: This only works for oooooooxxx style attention.
|
|
block_table = []
|
|
if prefix_cache_hit:
|
|
# NOTE(woosuk): For flash-attn, the block table should
|
|
# include the entries for the incoming prefill tokens.
|
|
block_table = block_tables[seq_id]
|
|
elif ((chunked_prefill_enabled or not is_prompt)
|
|
and block_tables is not None):
|
|
if curr_sliding_window_block == 0:
|
|
block_table = block_tables[seq_id]
|
|
else:
|
|
block_table = block_tables[seq_id][
|
|
-curr_sliding_window_block:]
|
|
self.block_tables.append(block_table)
|
|
|
|
# Compute slot mapping.
|
|
is_profile_run = is_block_tables_empty(block_tables)
|
|
start_idx = compute_slot_mapping_start_idx(
|
|
is_prompt, query_len, context_len, self.sliding_window,
|
|
self.use_v2_block_manager)
|
|
compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
|
|
seq_len, context_len, start_idx,
|
|
self.block_size, inter_data.block_tables)
|
|
|
|
def build(self, seq_lens: List[int], query_lens: List[int],
|
|
cuda_graph_pad_size: int, batch_size: int):
|
|
"""Build attention metadata with on-device tensors.
|
|
|
|
Args:
|
|
seq_lens: The maybe padded sequence lengths of the input sequences.
|
|
query_lens: The query lengths of the input sequences.
|
|
cuda_graph_pad_size: The padding size for cuda graph.
|
|
-1 if cuda graph is not used.
|
|
batch_size: The maybe padded batch size.
|
|
"""
|
|
prefix_cache_hit = any([
|
|
inter_data.prefix_cache_hit
|
|
for inter_data in self.input_builder.inter_data_list
|
|
])
|
|
for inter_data in self.input_builder.inter_data_list:
|
|
self._add_seq_group(inter_data,
|
|
self.input_builder.chunked_prefill_enabled,
|
|
prefix_cache_hit)
|
|
|
|
device = self.runner.device
|
|
use_captured_graph = cuda_graph_pad_size != -1
|
|
|
|
max_query_len = max(query_lens)
|
|
max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
|
|
max_decode_seq_len = max(self.curr_seq_lens, default=0)
|
|
num_decode_tokens = self.num_decode_tokens
|
|
|
|
if use_captured_graph:
|
|
self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
|
|
self.block_tables.extend([] * cuda_graph_pad_size)
|
|
num_decode_tokens = batch_size
|
|
|
|
# The shape of graph_block_tables is
|
|
# [max batch size, max context len // block size].
|
|
input_block_tables = self.runner.graph_block_tables[:batch_size]
|
|
max_blocks = input_block_tables.shape[1]
|
|
for i, block_table in enumerate(self.block_tables):
|
|
if block_table:
|
|
num_blocks = len(block_table)
|
|
if num_blocks <= max_blocks:
|
|
input_block_tables[i, :num_blocks] = block_table
|
|
else:
|
|
# It may be possible to have more blocks allocated due
|
|
# to lookahead slots of multi-step, however, they are
|
|
# not used anyway, so can be safely ignored.
|
|
input_block_tables[
|
|
i, :max_blocks] = block_table[:max_blocks]
|
|
|
|
block_tables = torch.from_numpy(input_block_tables).to(
|
|
device=device, non_blocking=True)
|
|
else:
|
|
block_tables = make_tensor_with_pad(
|
|
self.block_tables,
|
|
pad=0,
|
|
dtype=torch.int,
|
|
device=device,
|
|
)
|
|
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
|
|
|
|
assert device is not None
|
|
context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
|
|
device, self.runner.pin_memory)
|
|
seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
|
|
self.runner.pin_memory)
|
|
query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
|
|
self.runner.pin_memory)
|
|
slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
|
|
device, self.runner.pin_memory)
|
|
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
|
|
dtype=torch.int32,
|
|
device=device)
|
|
seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
|
|
dtype=torch.int32,
|
|
device=device)
|
|
torch.cumsum(seq_lens_tensor,
|
|
dim=0,
|
|
dtype=seq_start_loc.dtype,
|
|
out=seq_start_loc[1:])
|
|
torch.cumsum(query_lens_tensor,
|
|
dim=0,
|
|
dtype=query_start_loc.dtype,
|
|
out=query_start_loc[1:])
|
|
|
|
return FlashAttentionMetadata(
|
|
num_prefills=self.num_prefills,
|
|
slot_mapping=slot_mapping_tensor,
|
|
num_prefill_tokens=self.num_prefill_tokens,
|
|
num_decode_tokens=num_decode_tokens,
|
|
seq_lens=seq_lens,
|
|
seq_lens_tensor=seq_lens_tensor,
|
|
max_query_len=max_query_len,
|
|
max_prefill_seq_len=max_prefill_seq_len,
|
|
max_decode_seq_len=max_decode_seq_len,
|
|
query_start_loc=query_start_loc,
|
|
seq_start_loc=seq_start_loc,
|
|
context_lens_tensor=context_lens_tensor,
|
|
block_tables=block_tables,
|
|
use_cuda_graph=use_captured_graph,
|
|
)
|
|
|
|
|
|
class FlashAttentionImpl(AttentionImpl):
|
|
"""
|
|
If the input tensors contain prompt tokens, the layout is as follows:
|
|
|<--------------- num_prefill_tokens ----------------->|
|
|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
|
|
|
|
Otherwise, the layout is as follows:
|
|
|<----------------- num_decode_tokens ------------------>|
|
|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
|
|
|
|
Generation tokens can contain padding when cuda-graph is used.
|
|
Currently, prompt tokens don't contain any padding.
|
|
|
|
The prompts might have different lengths, while the generation tokens
|
|
always have length 1.
|
|
|
|
If chunked prefill is enabled, prefill tokens and decode tokens can be
|
|
batched together in a flattened 1D query.
|
|
|
|
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|
|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
|
|
|
|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
|
|
padding between prefill and decode tokens.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[List[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[Dict[str, Any]] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
) -> None:
|
|
if blocksparse_params is not None:
|
|
raise ValueError(
|
|
"FlashAttention does not support block-sparse attention.")
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
self.sliding_window = ((sliding_window, sliding_window)
|
|
if sliding_window is not None else (-1, -1))
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
if logits_soft_cap is None:
|
|
# In flash-attn, setting logits_soft_cap as 0 means no soft cap.
|
|
logits_soft_cap = 0
|
|
self.logits_soft_cap = logits_soft_cap
|
|
|
|
assert self.num_heads % self.num_kv_heads == 0
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
|
|
if sliding_window is not None:
|
|
# NOTE(woosuk): flash-attn's sliding window does not work with
|
|
# paged KV cache.
|
|
raise ValueError(
|
|
"Sliding window is not supported in FlashAttention.")
|
|
|
|
support_head_sizes = FlashAttentionBackend.get_supported_head_sizes()
|
|
if head_size not in support_head_sizes:
|
|
raise ValueError(
|
|
f"Head size {head_size} is not supported by FlashAttention. "
|
|
f"Supported head sizes are: {support_head_sizes}.")
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: FlashAttentionMetadata,
|
|
k_scale: float = 1.0,
|
|
v_scale: float = 1.0,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with FlashAttention.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError("Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"FlashAttentionImpl")
|
|
|
|
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
|
|
assert k_scale == 1.0 and v_scale == 1.0, (
|
|
"key/v_scale is not supported in FlashAttention.")
|
|
|
|
num_tokens, hidden_size = query.shape
|
|
# Reshape the query, key, and value tensors.
|
|
query = query.view(-1, self.num_heads, self.head_size)
|
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
|
value = value.view(-1, self.num_kv_heads, self.head_size)
|
|
|
|
if kv_cache is not None:
|
|
key_cache = kv_cache[0]
|
|
value_cache = kv_cache[1]
|
|
|
|
# Reshape the input keys and values and store them in the cache.
|
|
# If kv_cache is not provided, the new key and value tensors are
|
|
# not cached. This happens during the initial memory profiling run.
|
|
torch.ops.vllm.reshape_and_cache_flash(
|
|
key,
|
|
value,
|
|
kv_cache,
|
|
attn_metadata.slot_mapping.flatten(),
|
|
self.kv_cache_dtype,
|
|
k_scale,
|
|
v_scale,
|
|
)
|
|
|
|
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
|
num_decode_tokens = attn_metadata.num_decode_tokens
|
|
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
|
|
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
|
|
|
|
# Query for decode. KV is not needed because it is already cached.
|
|
decode_query = query[num_prefill_tokens:]
|
|
# QKV for prefill.
|
|
query = query[:num_prefill_tokens]
|
|
key = key[:num_prefill_tokens]
|
|
value = value[:num_prefill_tokens]
|
|
|
|
assert query.shape[0] == num_prefill_tokens
|
|
assert decode_query.shape[0] == num_decode_tokens
|
|
|
|
prefill_output: Optional[torch.Tensor] = None
|
|
decode_output: Optional[torch.Tensor] = None
|
|
|
|
if prefill_meta := attn_metadata.prefill_metadata:
|
|
# Prompt run.
|
|
if (kv_cache is None or prefill_meta.block_tables is None
|
|
or prefill_meta.block_tables.numel() == 0):
|
|
# normal attention
|
|
# When block_tables are not filled, it means q and k are the
|
|
# prompt, and they have the same length.
|
|
prefill_output = torch.ops.vllm.flash_attn_varlen_func(
|
|
q=query,
|
|
k=key,
|
|
v=value,
|
|
cu_seqlens_q=prefill_meta.seq_start_loc,
|
|
cu_seqlens_k=prefill_meta.seq_start_loc,
|
|
max_seqlen_q=prefill_meta.max_prefill_seq_len,
|
|
max_seqlen_k=prefill_meta.max_prefill_seq_len,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
window_size=self.sliding_window,
|
|
alibi_slopes=self.alibi_slopes,
|
|
softcap=self.logits_soft_cap,
|
|
)
|
|
else:
|
|
# prefix-enabled attention
|
|
assert prefill_meta.seq_lens is not None
|
|
max_seq_len = max(prefill_meta.seq_lens)
|
|
prefill_output = torch.ops.vllm.flash_attn_varlen_func( # noqa
|
|
q=query,
|
|
k=key_cache,
|
|
v=value_cache,
|
|
cu_seqlens_q=prefill_meta.query_start_loc,
|
|
max_seqlen_q=prefill_meta.max_query_len,
|
|
cu_seqlens_k=prefill_meta.seq_start_loc,
|
|
max_seqlen_k=max_seq_len,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
alibi_slopes=self.alibi_slopes,
|
|
block_table=prefill_meta.block_tables,
|
|
softcap=self.logits_soft_cap,
|
|
)
|
|
|
|
if decode_meta := attn_metadata.decode_metadata:
|
|
# Decoding run.
|
|
decode_output = torch.ops.vllm.flash_attn_with_kvcache(
|
|
decode_query.unsqueeze(1),
|
|
key_cache,
|
|
value_cache,
|
|
block_table=decode_meta.block_tables,
|
|
cache_seqlens=decode_meta.seq_lens_tensor,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
alibi_slopes=self.alibi_slopes,
|
|
softcap=self.logits_soft_cap,
|
|
).squeeze(1)
|
|
|
|
if prefill_output is None:
|
|
assert decode_output is not None
|
|
return decode_output.view(num_decode_tokens, hidden_size)
|
|
if decode_output is None:
|
|
assert prefill_output is not None
|
|
return prefill_output.view(num_prefill_tokens, hidden_size)
|
|
output = torch.cat([prefill_output, decode_output], dim=0)
|
|
return output.view(num_tokens, hidden_size)
|