174 lines
5.2 KiB
Python
174 lines
5.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
"""Tests for H2OVL's multimodal preprocessing kwargs."""
|
|
from collections.abc import Mapping
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
from PIL import Image
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.image import rescale_image_size
|
|
from vllm.multimodal.processing import BaseMultiModalProcessor
|
|
|
|
from ....conftest import _ImageAssets
|
|
from ...utils import build_model_context
|
|
|
|
|
|
def _get_expected_num_patches(
|
|
config: PretrainedConfig,
|
|
image: Image.Image,
|
|
num_imgs: int,
|
|
min_num: int,
|
|
max_num: int,
|
|
):
|
|
from vllm.model_executor.models.h2ovl import (calculate_h2ovl_targets,
|
|
get_h2ovl_target_ratios)
|
|
|
|
width, height = image.size
|
|
|
|
# Calculate the expected number of blocks
|
|
if num_imgs == 1 and config.use_msac:
|
|
# First pass
|
|
blocks1, _, _, aspect_ratio = calculate_h2ovl_targets(
|
|
orig_width=width,
|
|
orig_height=height,
|
|
target_ratios=get_h2ovl_target_ratios(
|
|
min_num=1,
|
|
max_num=max_num,
|
|
prior_aspect_ratio=None,
|
|
),
|
|
image_size=config.vision_config.image_size,
|
|
use_thumbnail=False, # Thumbnail is handled separately
|
|
)
|
|
|
|
# Second pass
|
|
blocks2, _, _, _ = calculate_h2ovl_targets(
|
|
orig_width=width,
|
|
orig_height=height,
|
|
target_ratios=get_h2ovl_target_ratios(
|
|
min_num=3,
|
|
max_num=max_num,
|
|
prior_aspect_ratio=aspect_ratio,
|
|
),
|
|
image_size=config.vision_config.image_size,
|
|
use_thumbnail=False,
|
|
)
|
|
|
|
# Add thumbnail if use_thumbnail is True and total_blocks > 1
|
|
if config.use_thumbnail:
|
|
blocks1 += 1 if blocks1 > 1 else 0
|
|
blocks2 += 1 if blocks2 > 1 else 0
|
|
|
|
# Total blocks is the sum of blocks from both passes minus
|
|
# overlapping
|
|
total_blocks = blocks1 + blocks2 - 1
|
|
|
|
return total_blocks
|
|
|
|
blocks, _, _, _ = calculate_h2ovl_targets(
|
|
orig_width=width,
|
|
orig_height=height,
|
|
target_ratios=get_h2ovl_target_ratios(
|
|
min_num,
|
|
max_num,
|
|
prior_aspect_ratio=None,
|
|
),
|
|
image_size=config.vision_config.image_size,
|
|
use_thumbnail=False,
|
|
)
|
|
expected_num_patches = blocks
|
|
|
|
if config.use_thumbnail and expected_num_patches > 1:
|
|
expected_num_patches += 1
|
|
|
|
return expected_num_patches
|
|
|
|
|
|
def _run_check(
|
|
processor: BaseMultiModalProcessor,
|
|
images: list[Image.Image],
|
|
min_num: int,
|
|
max_num: int,
|
|
mm_processor_kwargs: Mapping[str, object],
|
|
):
|
|
tokenizer = processor.info.get_tokenizer()
|
|
config = processor.info.get_hf_config()
|
|
|
|
prompt = "<image>" * len(images)
|
|
mm_data = {"image": images}
|
|
|
|
total_expected_num_patches = sum(
|
|
_get_expected_num_patches(config, image, len(images), min_num, max_num)
|
|
for image in images)
|
|
|
|
processed_inputs = processor.apply(prompt, mm_data, mm_processor_kwargs)
|
|
|
|
# Ensure we have the right number of placeholders per num_crops size
|
|
image_token_id = tokenizer.convert_tokens_to_ids("<IMG_CONTEXT>")
|
|
img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id)
|
|
pixel_shape = processed_inputs["mm_kwargs"]["pixel_values_flat"].shape
|
|
|
|
assert img_tok_count == 256 * total_expected_num_patches
|
|
assert pixel_shape[0] == total_expected_num_patches
|
|
|
|
|
|
@pytest.mark.parametrize("model_id", [
|
|
"h2oai/h2ovl-mississippi-800m",
|
|
"h2oai/h2ovl-mississippi-2b",
|
|
])
|
|
@pytest.mark.parametrize(
|
|
"size_factors",
|
|
[
|
|
# Single-scale
|
|
[1.0],
|
|
# Single-scale, batched
|
|
[1.0, 1.0, 1.0],
|
|
# Multi-scale
|
|
[0.25, 0.5, 1.0],
|
|
[4.0, 2.0, 1.0],
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
("min_dynamic_patch", "max_dynamic_patch"),
|
|
[(1, 1), (1, 2), (1, 4), (1, 8), (2, 4), (4, 8)],
|
|
)
|
|
@pytest.mark.parametrize("dynamic_image_size", [True, False])
|
|
@pytest.mark.parametrize("kwargs_on_init", [True, False])
|
|
def test_processor_override(
|
|
model_id: str,
|
|
image_assets: _ImageAssets,
|
|
size_factors: list[int],
|
|
min_dynamic_patch: int,
|
|
max_dynamic_patch: int,
|
|
dynamic_image_size: Optional[bool],
|
|
kwargs_on_init: bool,
|
|
):
|
|
mm_processor_kwargs = {
|
|
"min_dynamic_patch": min_dynamic_patch,
|
|
"max_dynamic_patch": max_dynamic_patch,
|
|
"dynamic_image_size": dynamic_image_size,
|
|
}
|
|
|
|
ctx = build_model_context(
|
|
model_id,
|
|
mm_processor_kwargs=mm_processor_kwargs if kwargs_on_init else None,
|
|
limit_mm_per_prompt={"image": len(size_factors)},
|
|
)
|
|
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
|
|
hf_processor_mm_kwargs = {} if kwargs_on_init else mm_processor_kwargs
|
|
|
|
min_num = min_dynamic_patch if dynamic_image_size else 1
|
|
max_num = max_dynamic_patch if dynamic_image_size else 1
|
|
|
|
_run_check(
|
|
processor,
|
|
[
|
|
rescale_image_size(image_assets[0].pil_image, f)
|
|
for f in size_factors
|
|
],
|
|
min_num,
|
|
max_num,
|
|
hf_processor_mm_kwargs,
|
|
)
|