vllm/tests/kernels/test_cutlass_moe.py
bnellnm 15ba07ef25
[Minor] Fused experts refactor (#15914)
Signed-off-by: Bill Nell <bnell@redhat.com>
2025-04-03 10:19:38 -07:00

245 lines
9.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp8
from vllm.model_executor.layers.fused_moe.fused_moe import (fused_experts,
fused_topk)
from vllm.platforms import current_platform
NUM_EXPERTS = [40, 64]
TOP_KS = [6, 8]
def run(a: torch.Tensor, a_scale: torch.Tensor, w1_q: torch.Tensor,
w2_q: torch.Tensor, w1_scale: torch.Tensor, w2_scale: torch.Tensor,
topk_weights: torch.Tensor, topk_ids: torch.Tensor,
ab_strides1: torch.Tensor, c_strides1: torch.Tensor,
ab_strides2: torch.Tensor, c_strides2: torch.Tensor):
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
return cutlass_moe_fp8(a,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale)
@pytest.mark.parametrize("m", [2, 64, 224])
@pytest.mark.parametrize("n", [1024, 3072])
@pytest.mark.parametrize("k", [1024, 1536])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.skipif(
(lambda x: x is None or not ops.cutlass_group_gemm_supported(x.to_int()))(
current_platform.get_device_capability()),
reason="Grouped gemm is not supported on this GPU type.")
def test_cutlass_moe_no_graph(
m: int,
n: int,
k: int,
e: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
):
current_platform.seed_everything(7)
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
dtype = torch.half
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
# Get the right scale for tests.
_, a_scale1 = ops.scaled_fp8_quant(
a, use_per_token_if_dynamic=per_act_token)
a_q, _ = ops.scaled_fp8_quant(a,
a_scale1,
use_per_token_if_dynamic=per_act_token)
a_d = a_q.float().mul(a_scale1).to(dtype)
n_b_scales = 2 * n if per_out_ch else 1
k_b_scales = k if per_out_ch else 1
w1_q = torch.empty((e, 2 * n, k),
device="cuda",
dtype=torch.float8_e4m3fn)
w2_q = torch.empty((e, k, n), device="cuda", dtype=torch.float8_e4m3fn)
w1_scale = torch.empty((e, n_b_scales, 1),
device="cuda",
dtype=torch.float32)
w2_scale = torch.empty((e, k_b_scales, 1),
device="cuda",
dtype=torch.float32)
ab_strides1 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((e, ), 2 * n, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((e, ), n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
for expert in range(e):
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(
w1[expert], use_per_token_if_dynamic=per_out_ch)
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(
w2[expert], use_per_token_if_dynamic=per_out_ch)
w1_q = w1_q.transpose(1, 2)
w2_q = w2_q.transpose(1, 2)
ab_strides1 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((e, ), 2 * n, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((e, ), n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
w1_d = torch.empty_like(w1)
w2_d = torch.empty_like(w2)
for expert in range(e):
w1_d[expert] = (w1_q[expert].t().float() * w1_scale[expert]).half()
w2_d[expert] = (w2_q[expert].t().float() * w2_scale[expert]).half()
score = torch.randn((m, e), device="cuda", dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
triton_output = fused_experts(a_d, w1_d, w2_d, topk_weights, topk_ids)
cutlass_output = cutlass_moe_fp8(a,
w1_q,
w2_q,
w1_scale,
w2_scale,
topk_weights,
topk_ids,
ab_strides1,
c_strides1,
ab_strides2,
c_strides2,
a1_scale=a_scale1)
#print(triton_output)
#print(cutlass_output)
#print("*")
torch.testing.assert_close(triton_output,
cutlass_output,
atol=5e-2,
rtol=1e-2)
@pytest.mark.parametrize("m", [2, 64, 224])
@pytest.mark.parametrize("n", [1024, 3072])
@pytest.mark.parametrize("k", [1024, 1536])
@pytest.mark.parametrize("e", NUM_EXPERTS)
@pytest.mark.parametrize("topk", TOP_KS)
@pytest.mark.parametrize("per_act_token", [True, False])
@pytest.mark.parametrize("per_out_ch", [True, False])
@pytest.mark.skipif(
(lambda x: x is None or not ops.cutlass_group_gemm_supported(x.to_int()))(
current_platform.get_device_capability()),
reason="Grouped gemm is not supported on this GPU type.")
def test_cutlass_moe_cuda_graph(
m: int,
n: int,
k: int,
e: int,
topk: int,
per_act_token: bool,
per_out_ch: bool,
):
current_platform.seed_everything(7)
with set_current_vllm_config(
VllmConfig(parallel_config=ParallelConfig(
pipeline_parallel_size=1))):
dtype = torch.half
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
# Get the right scale for tests.
_, a_scale1 = ops.scaled_fp8_quant(
a, use_per_token_if_dynamic=per_act_token)
a_q, _ = ops.scaled_fp8_quant(a,
a_scale1,
use_per_token_if_dynamic=per_act_token)
a_d = a_q.float().mul(a_scale1).to(dtype)
n_b_scales = 2 * n if per_out_ch else 1
k_b_scales = k if per_out_ch else 1
w1_q = torch.empty((e, 2 * n, k),
device="cuda",
dtype=torch.float8_e4m3fn)
w2_q = torch.empty((e, k, n), device="cuda", dtype=torch.float8_e4m3fn)
w1_scale = torch.empty((e, n_b_scales, 1),
device="cuda",
dtype=torch.float32)
w2_scale = torch.empty((e, k_b_scales, 1),
device="cuda",
dtype=torch.float32)
ab_strides1 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((e, ), 2 * n, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((e, ), n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
for expert in range(e):
w1_q[expert], w1_scale[expert] = ops.scaled_fp8_quant(
w1[expert], use_per_token_if_dynamic=per_out_ch)
w2_q[expert], w2_scale[expert] = ops.scaled_fp8_quant(
w2[expert], use_per_token_if_dynamic=per_out_ch)
w1_q = w1_q.transpose(1, 2)
w2_q = w2_q.transpose(1, 2)
ab_strides1 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
c_strides1 = torch.full((e, ), 2 * n, device="cuda", dtype=torch.int64)
ab_strides2 = torch.full((e, ), n, device="cuda", dtype=torch.int64)
c_strides2 = torch.full((e, ), k, device="cuda", dtype=torch.int64)
w1_d = torch.empty_like(w1)
w2_d = torch.empty_like(w2)
for expert in range(e):
w1_d[expert] = (w1_q[expert].t().float() * w1_scale[expert]).half()
w2_d[expert] = (w2_q[expert].t().float() * w2_scale[expert]).half()
score = torch.randn((m, e), device="cuda", dtype=dtype)
topk_weights, topk_ids = fused_topk(a, score, topk, renormalize=False)
triton_output = fused_experts(a_d, w1_d, w2_d, topk_weights, topk_ids)
stream = torch.cuda.Stream()
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, stream=stream):
cutlass_output = run(a, a_scale1, w1_q, w2_q, w1_scale, w2_scale,
topk_weights, topk_ids, ab_strides1,
c_strides1, ab_strides2, c_strides2)
torch.cuda.synchronize()
graph.replay()
torch.cuda.synchronize()
#print(triton_output)
#print(cutlass_output)
#print("*")
torch.testing.assert_close(triton_output,
cutlass_output,
atol=9e-2,
rtol=1e-2)