
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com> Co-authored-by: Xiaowei Jiang <xwjiang2010@gmail.com> Co-authored-by: ywang96 <ywang@roblox.com> Co-authored-by: xwjiang2010 <87673679+xwjiang2010@users.noreply.github.com> Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
86 lines
2.7 KiB
Python
86 lines
2.7 KiB
Python
import numpy as np
|
|
import pytest
|
|
from transformers import CLIPImageProcessor, LlavaNextImageProcessor
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.utils import rescale_image_size
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["half", "float"])
|
|
@pytest.mark.parametrize("size_factor", [0.25, 0.5, 1.0])
|
|
def test_clip_image_processor(image_assets, dtype, size_factor):
|
|
MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
|
|
|
|
hf_processor = CLIPImageProcessor.from_pretrained(MODEL_NAME)
|
|
assert isinstance(hf_processor, CLIPImageProcessor)
|
|
|
|
model_config = ModelConfig(
|
|
model=MODEL_NAME,
|
|
tokenizer=MODEL_NAME,
|
|
tokenizer_mode="auto",
|
|
trust_remote_code=False,
|
|
seed=0,
|
|
dtype=dtype,
|
|
revision=None,
|
|
)
|
|
|
|
for asset in image_assets:
|
|
image = rescale_image_size(asset.pil_image, size_factor)
|
|
|
|
hf_result = hf_processor.preprocess(
|
|
image,
|
|
return_tensors="pt",
|
|
)
|
|
vllm_result = MULTIMODAL_REGISTRY.map_input(
|
|
model_config,
|
|
{"image": image},
|
|
)
|
|
|
|
assert hf_result.keys() == vllm_result.keys()
|
|
for key, hf_tensor in hf_result.items():
|
|
hf_arr: np.ndarray = hf_tensor.numpy()
|
|
vllm_arr: np.ndarray = vllm_result[key].numpy()
|
|
|
|
assert hf_arr.shape == vllm_arr.shape, f"Failed for key={key}"
|
|
assert np.allclose(hf_arr, vllm_arr), f"Failed for key={key}"
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["half", "float"])
|
|
@pytest.mark.parametrize("size_factor", [0.25, 0.5, 1.0])
|
|
def test_llava_next_image_processor(image_assets, dtype, size_factor):
|
|
MODEL_NAME = "llava-hf/llava-v1.6-vicuna-7b-hf"
|
|
|
|
hf_processor = LlavaNextImageProcessor.from_pretrained(MODEL_NAME)
|
|
assert isinstance(hf_processor, LlavaNextImageProcessor)
|
|
|
|
model_config = ModelConfig(
|
|
model=MODEL_NAME,
|
|
tokenizer=MODEL_NAME,
|
|
tokenizer_mode="auto",
|
|
trust_remote_code=False,
|
|
seed=0,
|
|
dtype=dtype,
|
|
revision=None,
|
|
)
|
|
|
|
for asset in image_assets:
|
|
image = rescale_image_size(asset.pil_image, size_factor)
|
|
|
|
hf_result = hf_processor.preprocess(
|
|
image,
|
|
return_tensors="pt",
|
|
)
|
|
vllm_result = MULTIMODAL_REGISTRY.map_input(
|
|
model_config,
|
|
{"image": image},
|
|
)
|
|
|
|
assert hf_result.keys() == vllm_result.keys()
|
|
for key, hf_tensor in hf_result.items():
|
|
hf_arr: np.ndarray = hf_tensor.numpy()
|
|
vllm_arr: np.ndarray = vllm_result[key].numpy()
|
|
|
|
assert hf_arr.shape == vllm_arr.shape, f"Failed for key={key}"
|
|
assert np.allclose(hf_arr, vllm_arr), f"Failed for key={key}"
|