vllm/tests/multimodal/test_mapper.py
Cyrus Leung 9831aec49f
[Core] Dynamic image size support for VLMs (#5276)
Signed-off-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Co-authored-by: Xiaowei Jiang <xwjiang2010@gmail.com>
Co-authored-by: ywang96 <ywang@roblox.com>
Co-authored-by: xwjiang2010 <87673679+xwjiang2010@users.noreply.github.com>
Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
2024-07-02 20:34:00 -07:00

86 lines
2.7 KiB
Python

import numpy as np
import pytest
from transformers import CLIPImageProcessor, LlavaNextImageProcessor
from vllm.config import ModelConfig
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.utils import rescale_image_size
@pytest.mark.parametrize("dtype", ["half", "float"])
@pytest.mark.parametrize("size_factor", [0.25, 0.5, 1.0])
def test_clip_image_processor(image_assets, dtype, size_factor):
MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
hf_processor = CLIPImageProcessor.from_pretrained(MODEL_NAME)
assert isinstance(hf_processor, CLIPImageProcessor)
model_config = ModelConfig(
model=MODEL_NAME,
tokenizer=MODEL_NAME,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype=dtype,
revision=None,
)
for asset in image_assets:
image = rescale_image_size(asset.pil_image, size_factor)
hf_result = hf_processor.preprocess(
image,
return_tensors="pt",
)
vllm_result = MULTIMODAL_REGISTRY.map_input(
model_config,
{"image": image},
)
assert hf_result.keys() == vllm_result.keys()
for key, hf_tensor in hf_result.items():
hf_arr: np.ndarray = hf_tensor.numpy()
vllm_arr: np.ndarray = vllm_result[key].numpy()
assert hf_arr.shape == vllm_arr.shape, f"Failed for key={key}"
assert np.allclose(hf_arr, vllm_arr), f"Failed for key={key}"
@pytest.mark.parametrize("dtype", ["half", "float"])
@pytest.mark.parametrize("size_factor", [0.25, 0.5, 1.0])
def test_llava_next_image_processor(image_assets, dtype, size_factor):
MODEL_NAME = "llava-hf/llava-v1.6-vicuna-7b-hf"
hf_processor = LlavaNextImageProcessor.from_pretrained(MODEL_NAME)
assert isinstance(hf_processor, LlavaNextImageProcessor)
model_config = ModelConfig(
model=MODEL_NAME,
tokenizer=MODEL_NAME,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype=dtype,
revision=None,
)
for asset in image_assets:
image = rescale_image_size(asset.pil_image, size_factor)
hf_result = hf_processor.preprocess(
image,
return_tensors="pt",
)
vllm_result = MULTIMODAL_REGISTRY.map_input(
model_config,
{"image": image},
)
assert hf_result.keys() == vllm_result.keys()
for key, hf_tensor in hf_result.items():
hf_arr: np.ndarray = hf_tensor.numpy()
vllm_arr: np.ndarray = vllm_result[key].numpy()
assert hf_arr.shape == vllm_arr.shape, f"Failed for key={key}"
assert np.allclose(hf_arr, vllm_arr), f"Failed for key={key}"