
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com> Co-authored-by: Amir Balwel <amoooori04@gmail.com> Co-authored-by: root <kuanfu.liu@akirakan.com> Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com> Co-authored-by: kuanfu <kuanfu.liu@embeddedllm.com> Co-authored-by: miloice <17350011+kliuae@users.noreply.github.com>
135 lines
5.2 KiB
Diff
135 lines
5.2 KiB
Diff
--- /opt/conda/envs/py_3.10/lib/python3.10/site-packages/xformers/ops/fmha/flash.py 2023-11-29 03:17:03.930103539 +0000
|
|
+++ flash.py 2023-11-28 16:14:25.206128903 +0000
|
|
@@ -31,39 +31,39 @@
|
|
|
|
FLASH_VERSION = "0.0.0"
|
|
try:
|
|
- try:
|
|
- from ... import _C_flashattention # type: ignore[attr-defined]
|
|
- from ..._cpp_lib import _build_metadata
|
|
-
|
|
- if _build_metadata is not None:
|
|
- FLASH_VERSION = _build_metadata.flash_version
|
|
- except ImportError:
|
|
- import flash_attn
|
|
- from flash_attn.flash_attn_interface import flash_attn_cuda as _C_flashattention
|
|
-
|
|
- FLASH_VERSION = flash_attn.__version__
|
|
- flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:2])
|
|
- if flash_ver_parsed < (2, 3):
|
|
- raise ImportError("Requires 2.3 for sliding window support")
|
|
+ #try:
|
|
+ # from ... import _C_flashattention # type: ignore[attr-defined]
|
|
+ # from ..._cpp_lib import _build_metadata
|
|
+
|
|
+ # if _build_metadata is not None:
|
|
+ # FLASH_VERSION = _build_metadata.flash_version
|
|
+ #except ImportError:
|
|
+ import flash_attn
|
|
+ from flash_attn.flash_attn_interface import flash_attn_cuda as _C_flashattention
|
|
+
|
|
+ FLASH_VERSION = flash_attn.__version__
|
|
+ # flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:2])
|
|
+ # if flash_ver_parsed < (2, 3):
|
|
+ # raise ImportError("Requires 2.3 for sliding window support")
|
|
|
|
# create library so that flash-attn goes through the PyTorch Dispatcher
|
|
- _flash_lib = torch.library.Library("xformers_flash", "DEF")
|
|
+ #_flash_lib = torch.library.Library("xformers_flash", "DEF")
|
|
|
|
- _flash_lib.define(
|
|
- "flash_fwd(Tensor query, Tensor key, Tensor value, "
|
|
- "Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, "
|
|
- "int max_seqlen_q, int max_seqlen_k, "
|
|
- "float p, float softmax_scale, "
|
|
- "bool is_causal, int window_size, bool return_softmax) -> (Tensor, Tensor, Tensor)"
|
|
- )
|
|
-
|
|
- _flash_lib.define(
|
|
- "flash_bwd(Tensor dout, Tensor query, Tensor key, Tensor value, "
|
|
- "Tensor out, Tensor softmax_lse_, Tensor dq, Tensor dk, Tensor dv, "
|
|
- "Tensor cu_seqlens_q, Tensor cu_seqlens_k, "
|
|
- "int max_seqlen_q, int max_seqlen_k, "
|
|
- "float p, float softmax_scale, bool is_causal, int window_size, Tensor rng_state) -> (Tensor, Tensor, Tensor)"
|
|
- )
|
|
+ #_flash_lib.define(
|
|
+ # "flash_fwd(Tensor query, Tensor key, Tensor value, "
|
|
+ # "Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, "
|
|
+ # "int max_seqlen_q, int max_seqlen_k, "
|
|
+ # "float p, float softmax_scale, "
|
|
+ # "bool is_causal, int window_size, bool return_softmax) -> (Tensor, Tensor, Tensor)"
|
|
+ #)
|
|
+
|
|
+ #_flash_lib.define(
|
|
+ # "flash_bwd(Tensor dout, Tensor query, Tensor key, Tensor value, "
|
|
+ # "Tensor out, Tensor softmax_lse_, Tensor dq, Tensor dk, Tensor dv, "
|
|
+ # "Tensor cu_seqlens_q, Tensor cu_seqlens_k, "
|
|
+ # "int max_seqlen_q, int max_seqlen_k, "
|
|
+ # "float p, float softmax_scale, bool is_causal, int window_size, Tensor rng_state) -> (Tensor, Tensor, Tensor)"
|
|
+ #)
|
|
|
|
def _flash_fwd(
|
|
query,
|
|
@@ -98,8 +98,8 @@
|
|
p,
|
|
softmax_scale,
|
|
is_causal,
|
|
- window_size - 1, # window_size_left
|
|
- -1, # window_size_right
|
|
+ # window_size - 1, # window_size_left
|
|
+ # -1, # window_size_right
|
|
return_softmax,
|
|
None, # rng
|
|
)
|
|
@@ -127,8 +127,8 @@
|
|
softmax_scale,
|
|
False,
|
|
is_causal,
|
|
- window_size - 1, # window_size_left
|
|
- -1, # window_size_right
|
|
+ # window_size - 1, # window_size_left
|
|
+ # -1, # window_size_right
|
|
return_softmax,
|
|
None,
|
|
)
|
|
@@ -169,8 +169,8 @@
|
|
p,
|
|
softmax_scale,
|
|
is_causal,
|
|
- window_size - 1, # window_size_left
|
|
- -1, # window_size_right
|
|
+ # window_size - 1, # window_size_left
|
|
+ # -1, # window_size_right
|
|
None,
|
|
rng_state,
|
|
)
|
|
@@ -193,15 +193,15 @@
|
|
softmax_scale,
|
|
False, # zero_tensors
|
|
is_causal,
|
|
- window_size - 1, # window_size_left
|
|
- -1, # window_size_right
|
|
+ # window_size - 1, # window_size_left
|
|
+ # -1, # window_size_right
|
|
None,
|
|
rng_state,
|
|
)
|
|
return dq, dk, dv
|
|
|
|
- _flash_lib.impl("flash_fwd", _flash_fwd, "CUDA")
|
|
- _flash_lib.impl("flash_bwd", _flash_bwd, "CUDA")
|
|
+ #_flash_lib.impl("flash_fwd", _flash_fwd, "CUDA")
|
|
+ #_flash_lib.impl("flash_bwd", _flash_bwd, "CUDA")
|
|
except ImportError:
|
|
pass
|
|
|
|
@@ -348,7 +348,7 @@
|
|
implementation.
|
|
"""
|
|
|
|
- OPERATOR = get_operator("xformers_flash", "flash_fwd")
|
|
+ OPERATOR = _flash_fwd # get_operator("xformers_flash", "flash_fwd")
|
|
SUPPORTED_DEVICES: Set[str] = {"cuda"}
|
|
CUDA_MINIMUM_COMPUTE_CAPABILITY = (8, 0)
|
|
SUPPORTED_DTYPES: Set[torch.dtype] = {torch.half, torch.bfloat16}
|