vllm/vllm/worker/cpu_model_runner.py
Peter Salas 6c0b7f548d
[Core][VLM] Add precise multi-modal placeholder tracking (#8346)
Signed-off-by: Peter Salas <peter@fixie.ai>
2024-11-01 16:21:10 -07:00

571 lines
23 KiB
Python

import dataclasses
import weakref
from collections import defaultdict
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
import torch
from torch import nn
from vllm.attention import AttentionMetadata, get_attn_backend
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
ModelConfig, ParallelConfig, PromptAdapterConfig,
SchedulerConfig)
from vllm.logger import init_logger
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.model_loader import get_model
from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
MultiModalInputs, MultiModalPlaceholderMap)
from vllm.sequence import (IntermediateTensors, SequenceData,
SequenceGroupMetadata)
from vllm.transformers_utils.config import uses_mrope
from vllm.utils import make_tensor_with_pad
from vllm.worker.model_runner_base import (
ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
_add_attn_metadata_broadcastable_dict,
_add_sampling_metadata_broadcastable_dict,
_init_attn_metadata_from_tensor_dict,
_init_sampling_metadata_from_tensor_dict)
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
logger = init_logger(__name__)
_PAD_SLOT_ID = -1
@dataclass(frozen=True)
class ModelInputForCPU(ModelRunnerInputBase):
"""
Base class contains metadata needed for the base model forward pass on CPU
"""
input_tokens: Optional[torch.Tensor] = None
input_positions: Optional[torch.Tensor] = None
attn_metadata: Optional["AttentionMetadata"] = None
multi_modal_kwargs: Optional[BatchedTensorInputs] = None
virtual_engine: Optional[int] = None
seq_lens: Optional[List[int]] = None
query_lens: Optional[List[int]] = None
def as_broadcastable_tensor_dict(
self) -> Dict[str, Union[int, torch.Tensor]]:
tensor_dict = {
"input_tokens": self.input_tokens,
"input_positions": self.input_positions,
"multi_modal_kwargs": self.multi_modal_kwargs,
}
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
return tensor_dict
@classmethod
def from_broadcasted_tensor_dict(
cls: Type["ModelInputForCPU"],
tensor_dict: Dict[str, Any],
attn_backend: Optional["AttentionBackend"] = None
) -> "ModelInputForCPU":
if attn_backend is not None:
tensor_dict = _init_attn_metadata_from_tensor_dict(
attn_backend, tensor_dict)
return cls(**tensor_dict)
@dataclass(frozen=True)
class ModelInputForCPUWithSamplingMetadata(ModelInputForCPU):
"""
Used by the ModelRunner.
"""
sampling_metadata: Optional["SamplingMetadata"] = None
def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
tensor_dict = {
"input_tokens": self.input_tokens,
"input_positions": self.input_positions,
}
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
_add_sampling_metadata_broadcastable_dict(tensor_dict,
self.sampling_metadata)
return tensor_dict
@classmethod
def from_broadcasted_tensor_dict(
cls,
tensor_dict: Dict[str, Any],
attn_backend: Optional["AttentionBackend"] = None,
) -> "ModelInputForCPUWithSamplingMetadata":
tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
if attn_backend is not None:
tensor_dict = _init_attn_metadata_from_tensor_dict(
attn_backend, tensor_dict)
return cls(**tensor_dict)
class ModelInputForCPUBuilder(ModelRunnerInputBuilderBase[ModelInputForCPU]):
def __init__(self,
runner: "CPUModelRunner",
finished_requests_ids: Optional[List[str]] = None) -> None:
super().__init__()
self.seq_group_metadata_list: List[SequenceGroupMetadata] = []
self.runner = runner
self.model_input_cls = self.runner._model_input_cls
self.attn_backend = self.runner.attn_backend
self.sliding_window = self.runner.sliding_window
self.block_size = self.runner.block_size
self.device = self.runner.device
self.multi_modal_input_mapper = self.runner.multi_modal_input_mapper
def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
self.seq_group_metadata_list.append(seq_group_metadata)
def build(self) -> ModelInputForCPU:
multi_modal_kwargs = None
# NOTE: We assume that all sequences in the group are all prompts or
# all decodes.
is_prompt = self.seq_group_metadata_list[0].is_prompt
# Prepare input tensors.
if is_prompt:
(input_tokens, input_positions, attn_metadata, seq_lens,
multi_modal_kwargs) = self._prepare_prompt(
self.seq_group_metadata_list)
else:
(input_tokens, input_positions,
attn_metadata) = self._prepare_decode(
self.seq_group_metadata_list)
seq_lens = None
return self.model_input_cls(
input_tokens=input_tokens,
input_positions=input_positions,
attn_metadata=attn_metadata,
multi_modal_kwargs=multi_modal_kwargs,
# query_lens is not needed if chunked prefill is not
# supported. Since CPU worker doesn't support chunked prefill
# just use seq_lens instead.
seq_lens=seq_lens,
query_lens=seq_lens,
)
def _compute_multi_modal_input(self, seq_group: SequenceGroupMetadata,
seq_data: SequenceData, computed_len: int,
mm_processor_kwargs: Dict[str, Any]):
# NOTE: mm_data only includes the subset of multi-modal items that
# intersect with the current prefill positions.
mm_data, placeholder_maps = MultiModalPlaceholderMap.from_seq_group(
seq_group, range(computed_len, len(seq_data.get_token_ids())))
if not mm_data:
return
mm_kwargs = self.multi_modal_input_mapper(mm_data, mm_processor_kwargs)
# special processing for mrope position deltas.
mrope_positions = None
if self.runner.model_is_mrope:
image_grid_thw = mm_kwargs.get("image_grid_thw", None)
video_grid_thw = mm_kwargs.get("video_grid_thw", None)
assert image_grid_thw is not None or video_grid_thw is not None, (
"mrope embedding type requires multi-modal input mapper "
"returns 'image_grid_thw' or 'video_grid_thw'.")
hf_config = self.runner.model_config.hf_config
token_ids = seq_data.get_token_ids()
mrope_positions, mrope_position_delta = \
MRotaryEmbedding.get_input_positions(
token_ids,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
image_token_id=hf_config.image_token_id,
video_token_id=hf_config.video_token_id,
vision_start_token_id=hf_config.vision_start_token_id,
vision_end_token_id=hf_config.vision_end_token_id,
spatial_merge_size=hf_config.vision_config.
spatial_merge_size,
context_len=computed_len,
)
seq_data.mrope_position_delta = mrope_position_delta
return mm_kwargs, placeholder_maps, mrope_positions
def _prepare_prompt(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int],
BatchedTensorInputs]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[int] = []
input_positions: List[int] = []
input_mrope_positions: List[List[int]] = [[] for _ in range(3)]
slot_mapping: List[int] = []
seq_lens: List[int] = []
multi_modal_inputs_list: List[MultiModalInputs] = []
multi_modal_placeholder_maps: Dict[
str,
MultiModalPlaceholderMap] = defaultdict(MultiModalPlaceholderMap)
for seq_group_metadata in seq_group_metadata_list:
assert seq_group_metadata.is_prompt
seq_ids = list(seq_group_metadata.seq_data.keys())
assert len(seq_ids) == 1
seq_id = seq_ids[0]
seq_data = seq_group_metadata.seq_data[seq_id]
prompt_tokens = seq_data.get_token_ids()
computed_len = seq_data.get_num_computed_tokens()
seq_len = len(prompt_tokens)
seq_lens.append(seq_len) # Prompt token num
input_tokens.extend(prompt_tokens) # Token ids
mrope_positions = None
if seq_group_metadata.multi_modal_data:
mm_kwargs, placeholder_maps, mrope_positions = self \
._compute_multi_modal_input(
seq_group_metadata, seq_data, computed_len,
seq_group_metadata.mm_processor_kwargs)
multi_modal_inputs_list.append(mm_kwargs)
for modality, placeholder_map in placeholder_maps.items():
multi_modal_placeholder_maps[modality].extend(
placeholder_map)
# Token position ids
# NOTE(woosuk): Here we assume that the first token in the prompt
# is always the first token in the sequence.
if mrope_positions:
for idx in range(3):
input_mrope_positions[idx].extend(mrope_positions[idx])
else:
input_positions.extend(list(range(computed_len, seq_len)))
# Compute the slot mapping.
block_table = seq_group_metadata.block_tables[seq_id]
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
# where start_idx is max(0, seq_len - sliding_window).
# For example, if the prompt len is 10, sliding window is 8, and
# block size is 4, the first two tokens are masked and the slot
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
start_idx = 0
if self.sliding_window is not None:
start_idx = max(0, seq_len - self.sliding_window)
for i in range(computed_len, seq_len):
if i < start_idx:
slot_mapping.append(_PAD_SLOT_ID)
continue
block_number = block_table[i //
self.block_size] # type: ignore
block_offset = i % self.block_size # type: ignore
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
if any(input_mrope_positions):
input_positions = None # type: ignore
else:
input_mrope_positions = None # type: ignore
num_prompt_tokens = len(input_tokens)
input_tokens = torch.tensor(input_tokens,
dtype=torch.long,
device=self.device) # type: ignore
input_positions = torch.tensor(input_positions
or input_mrope_positions,
dtype=torch.long,
device=self.device) # type: ignore
slot_mapping = torch.tensor(slot_mapping,
dtype=torch.long,
device=self.device) # type: ignore
placeholder_index_maps = {
modality: placeholder_map.index_map()
for modality, placeholder_map in
multi_modal_placeholder_maps.items()
}
attn_metadata = self.attn_backend.make_metadata(
is_prompt=True,
seq_lens=seq_lens,
seq_lens_tensor=torch.tensor([]),
max_decode_seq_len=0,
num_prefills=len(seq_lens),
num_prefill_tokens=num_prompt_tokens,
num_decode_tokens=0,
block_tables=torch.tensor([]),
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=placeholder_index_maps,
)
multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list)
return (input_tokens, input_positions, attn_metadata, seq_lens,
multi_modal_kwargs)
def _prepare_decode(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[int] = []
input_positions: List[int] = []
input_mrope_positions: List[List[int]] = [[] for _ in range(3)]
slot_mapping: List[int] = []
seq_lens: List[int] = []
block_tables: List[List[int]] = []
for seq_group_metadata in seq_group_metadata_list:
assert not seq_group_metadata.is_prompt
assert seq_group_metadata.token_chunk_size == 1
seq_ids = list(seq_group_metadata.seq_data.keys())
for seq_id in seq_ids:
seq_data = seq_group_metadata.seq_data[seq_id]
generation_token = seq_data.get_last_token_id()
input_tokens.append(generation_token)
seq_len = seq_data.get_len()
position = seq_len - 1
if seq_data.mrope_position_delta is not None:
context_len = seq_data.get_num_computed_tokens()
next_pos = MRotaryEmbedding.get_next_input_positions(
seq_data.mrope_position_delta,
context_len,
seq_len,
)
for idx in range(3):
input_mrope_positions[idx].extend(next_pos[idx])
else:
input_positions.append(position)
seq_len = seq_len if self.sliding_window is None else min(
seq_len, self.sliding_window)
seq_lens.append(seq_len)
block_table = seq_group_metadata.block_tables[seq_id]
block_number = block_table[position // self.block_size]
block_offset = position % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
if self.sliding_window is not None:
sliding_window_blocks = (self.sliding_window //
self.block_size)
block_table = block_table[-sliding_window_blocks:]
block_tables.append(block_table)
if any(input_mrope_positions):
input_positions = None # type: ignore
else:
input_mrope_positions = None # type: ignore
max_decode_seq_len = max(seq_lens)
input_tokens = torch.tensor(input_tokens,
dtype=torch.long,
device=self.device)
input_positions = torch.tensor(input_positions
or input_mrope_positions,
dtype=torch.long,
device=self.device)
slot_mapping = torch.tensor(slot_mapping,
dtype=torch.long,
device=self.device)
seq_lens_tensor = torch.tensor(seq_lens,
dtype=torch.int,
device=self.device)
block_tables = make_tensor_with_pad(
block_tables,
pad=0,
dtype=torch.int,
device=self.device,
)
attn_metadata = self.attn_backend.make_metadata(
is_prompt=False,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=None,
seq_lens=seq_lens,
seq_lens_tensor=seq_lens_tensor,
max_decode_seq_len=max_decode_seq_len,
num_prefill_tokens=0,
num_decode_tokens=len(input_tokens),
num_prefills=0,
block_tables=block_tables,
)
return (
input_tokens,
input_positions,
attn_metadata,
)
class CPUModelRunner(ModelRunnerBase[ModelInputForCPU]):
_model_input_cls: Type[ModelInputForCPUWithSamplingMetadata] = (
ModelInputForCPUWithSamplingMetadata)
_builder_cls: Type[ModelInputForCPUBuilder] = ModelInputForCPUBuilder
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
cache_config: CacheConfig,
load_config: LoadConfig,
lora_config: Optional[LoRAConfig],
kv_cache_dtype: Optional[str] = "auto",
prompt_adapter_config: Optional[PromptAdapterConfig] = None,
is_driver_worker: bool = False,
*args,
**kwargs,
):
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
# Currently, CPU worker doesn't support chunked prefill.
assert self.scheduler_config.chunked_prefill_enabled is False
self.device_config = device_config
self.cache_config = cache_config
self.lora_config = lora_config
self.prompt_adapter_config = prompt_adapter_config
self.load_config = load_config
self.is_driver_worker = is_driver_worker
self.device = self.device_config.device
self.kv_cache_dtype = kv_cache_dtype
self.sliding_window = model_config.get_sliding_window()
self.block_size = cache_config.block_size
self.attn_backend = get_attn_backend(
self.model_config.get_head_size(),
self.model_config.dtype,
self.kv_cache_dtype,
self.block_size,
self.model_config.is_attention_free,
)
# Multi-modal data support
self.mm_registry = MULTIMODAL_REGISTRY
self.multi_modal_input_mapper = self.mm_registry \
.create_input_mapper(self.model_config)
self.mm_registry.init_mm_limits_per_prompt(self.model_config)
# Lazy initialization.
self.model: nn.Module # Set after init_Model
@property
def model_is_mrope(self) -> bool:
"""Detect if the model has "mrope" rope_scaling type.
mrope requires keep "rope_deltas" between prompt and decoding phases."""
return uses_mrope(self.model_config.hf_config)
def load_model(self) -> None:
self.model = get_model(model_config=self.model_config,
load_config=self.load_config,
device_config=self.device_config,
lora_config=self.lora_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config,
cache_config=self.cache_config)
def make_model_input_from_broadcasted_tensor_dict(
self,
tensor_dict: Dict[str, Any],
) -> ModelInputForCPUWithSamplingMetadata:
return ModelInputForCPUWithSamplingMetadata.from_broadcasted_tensor_dict( # noqa: E501
tensor_dict,
attn_backend=self.attn_backend,
)
def _prepare_model_input_tensors(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
finished_requests_ids: Optional[List[str]] = None
) -> ModelInputForCPUWithSamplingMetadata:
"""Helper method to prepare the model input based on a given sequence
group. Prepares metadata needed for the base model forward pass but not
metadata for possible additional steps, e.g., sampling.
"""
builder = self._builder_cls(weakref.proxy(self), finished_requests_ids)
for seq_group_metadata in seq_group_metadata_list:
builder.add_seq_group(seq_group_metadata)
return builder.build() # type: ignore
def prepare_model_input(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
virtual_engine: int = 0,
finished_requests_ids: Optional[List[str]] = None
) -> ModelInputForCPUWithSamplingMetadata:
"""Prepare the model input based on a given sequence group, including
metadata for the sampling step.
"""
model_input = self._prepare_model_input_tensors(
seq_group_metadata_list, finished_requests_ids)
# Sampling metadata is only required for the final pp group
generators = self.get_generators(finished_requests_ids)
sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
model_input.seq_lens,
model_input.query_lens,
self.device,
pin_memory=False,
generators=generators)
return dataclasses.replace(model_input,
sampling_metadata=sampling_metadata,
virtual_engine=virtual_engine)
@torch.no_grad()
def execute_model(
self,
model_input: ModelInputForCPUWithSamplingMetadata,
kv_caches: List[torch.Tensor],
intermediate_tensors: Optional[IntermediateTensors] = None,
num_steps: int = 1,
) -> Optional[List[SamplerOutput]]:
if num_steps > 1:
raise ValueError(
"CPU worker does not support multi-step execution.")
model_executable = self.model
execute_model_kwargs = {
"input_ids":
model_input.input_tokens,
"positions":
model_input.input_positions,
"kv_caches":
kv_caches,
"attn_metadata":
model_input.attn_metadata,
**MultiModalInputs.as_kwargs(model_input.multi_modal_kwargs or {},
device=self.device),
"intermediate_tensors":
intermediate_tensors,
}
hidden_states = model_executable(**execute_model_kwargs)
# Compute the logits.
logits = self.model.compute_logits(hidden_states,
model_input.sampling_metadata)
# Only perform sampling in the driver worker.
if not self.is_driver_worker:
return []
# Sample the next token.
output = self.model.sample(
logits=logits,
sampling_metadata=model_input.sampling_metadata,
)
return [output]