393 lines
14 KiB
Python
393 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright (c) Google Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only Gemma model compatible with HuggingFace weights."""
|
|
from functools import lru_cache
|
|
from typing import Iterable, List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import GemmaConfig
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.config import LoRAConfig
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import GeluAndMul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import Sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import SamplerOutput
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
@lru_cache(maxsize=None)
|
|
def _get_gemma_act_fn(
|
|
hidden_act: Optional[str],
|
|
hidden_activation: Optional[str],
|
|
) -> nn.Module:
|
|
if hidden_activation is None:
|
|
if hidden_act is not None:
|
|
logger.warning(
|
|
"Gemma's activation function was incorrectly set to exact GeLU "
|
|
"in the config JSON file when it was initially released. "
|
|
"Changing the activation function to approximate GeLU "
|
|
"(`gelu_pytorch_tanh`). If you want to use the legacy "
|
|
f"`{hidden_act}`, edit the config JSON to set "
|
|
f"`hidden_activation={hidden_act}` instead of `hidden_act`. "
|
|
"See https://github.com/huggingface/transformers/pull/29402 "
|
|
"for more details.")
|
|
return GeluAndMul(approximate="tanh")
|
|
elif hidden_activation == "gelu_pytorch_tanh":
|
|
return GeluAndMul(approximate="tanh")
|
|
elif hidden_activation == "gelu":
|
|
return GeluAndMul(approximate="none")
|
|
else:
|
|
raise ValueError(f"Activation function {hidden_act} is not "
|
|
"supported for Gemma models.")
|
|
|
|
|
|
class GemmaMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: Optional[str] = None,
|
|
hidden_activation: Optional[str] = None,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size, [intermediate_size] * 2,
|
|
bias=False,
|
|
linear_method=linear_method)
|
|
self.down_proj = RowParallelLinear(intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
linear_method=linear_method)
|
|
self.act_fn = _get_gemma_act_fn(hidden_act, hidden_activation)
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class GemmaAttention(nn.Module):
|
|
|
|
def __init__(self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
head_dim: int,
|
|
max_position_embeddings: int = 8192,
|
|
rope_theta: float = 10000,
|
|
linear_method: Optional[LinearMethodBase] = None) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = head_dim
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
linear_method=linear_method,
|
|
)
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
linear_method=linear_method,
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=self.rope_theta,
|
|
is_neox_style=True,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class GemmaDecoderLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GemmaConfig,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.self_attn = GemmaAttention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
head_dim=config.head_dim,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
rope_theta=config.rope_theta,
|
|
linear_method=linear_method,
|
|
)
|
|
self.mlp = GemmaMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
hidden_activation=getattr(config, "hidden_activation", None),
|
|
linear_method=linear_method,
|
|
)
|
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
residual: Optional[torch.Tensor],
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class GemmaModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: GemmaConfig,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.layers = nn.ModuleList([
|
|
GemmaDecoderLayer(config, linear_method)
|
|
for _ in range(config.num_hidden_layers)
|
|
])
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
# Normalize the embedding by sqrt(hidden_size)
|
|
# The normalizer's data type should be downcasted to the model's
|
|
# data type such as bfloat16, not float32.
|
|
# See https://github.com/huggingface/transformers/pull/29402
|
|
normalizer = self.config.hidden_size**0.5
|
|
self.register_buffer("normalizer", torch.tensor(normalizer))
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
hidden_states *= self.normalizer
|
|
|
|
residual = None
|
|
for i in range(len(self.layers)):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
kv_caches[i],
|
|
attn_metadata,
|
|
residual,
|
|
)
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class GemmaForCausalLM(nn.Module):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"qkv_proj",
|
|
"o_proj",
|
|
"gate_up_proj",
|
|
"down_proj",
|
|
]
|
|
# Gemma does not apply LoRA to the embedding layer.
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def __init__(
|
|
self,
|
|
config: GemmaConfig,
|
|
linear_method: Optional[LinearMethodBase] = None,
|
|
lora_config: Optional[LoRAConfig] = None,
|
|
) -> None:
|
|
del lora_config # Unused.
|
|
super().__init__()
|
|
self.config = config
|
|
self.linear_method = linear_method
|
|
self.model = GemmaModel(config, linear_method)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.sampler = Sampler()
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
|
attn_metadata)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
|
logits = self.logits_processor(self.model.embed_tokens.weight,
|
|
hidden_states, sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params = set()
|
|
for name, loaded_weight in weights:
|
|
for (param_name, shard_name, shard_id) in stacked_params_mapping:
|
|
if shard_name not in name:
|
|
continue
|
|
name = name.replace(shard_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# lm_head is not used in vllm as it is tied with embed_token.
|
|
# To prevent errors, skip loading lm_head.weight.
|
|
if "lm_head.weight" in name:
|
|
continue
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# GemmaRMSNorm is different from Llama's in that it multiplies
|
|
# (1 + weight) to the output, instead of just weight.
|
|
if "norm.weight" in name:
|
|
loaded_weight += 1.0
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
unloaded_params = params_dict.keys() - loaded_params
|
|
if unloaded_params:
|
|
raise RuntimeError(
|
|
"Some weights are not initialized from checkpoints: "
|
|
f"{unloaded_params}")
|