vllm/tests/multimodal/test_processor.py
2024-06-26 01:02:34 -07:00

150 lines
5.1 KiB
Python

import numpy as np
import pytest
from transformers import CLIPImageProcessor, LlavaNextImageProcessor
from vllm.config import ModelConfig, VisionLanguageConfig
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.image import ImagePixelData
from ..conftest import _STR_DTYPE_TO_TORCH_DTYPE
@pytest.mark.parametrize("dtype", ["half", "float"])
def test_clip_image_processor(image_assets, dtype):
MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
IMAGE_HEIGHT = IMAGE_WIDTH = 560
hf_processor = CLIPImageProcessor.from_pretrained(MODEL_NAME)
assert isinstance(hf_processor, CLIPImageProcessor)
model_config = ModelConfig(
model=MODEL_NAME,
tokenizer=MODEL_NAME,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype=dtype,
revision=None,
)
vlm_config = VisionLanguageConfig(
image_input_type=VisionLanguageConfig.ImageInputType.PIXEL_VALUES,
image_token_id=32000,
image_input_shape=(1, 3, IMAGE_HEIGHT, IMAGE_WIDTH),
image_feature_size=576,
image_processor=MODEL_NAME,
image_processor_revision=None,
)
for asset in image_assets:
hf_result = hf_processor.preprocess(
asset.pil_image,
return_tensors="pt",
).to(dtype=_STR_DTYPE_TO_TORCH_DTYPE[dtype])
vllm_result = MULTIMODAL_REGISTRY.process_input(
ImagePixelData(asset.pil_image),
model_config=model_config,
vlm_config=vlm_config,
)
assert hf_result.keys() == vllm_result.keys()
for key, hf_tensor in hf_result.items():
hf_arr: np.ndarray = hf_tensor.numpy()
vllm_arr: np.ndarray = vllm_result[key].numpy()
assert hf_arr.shape == vllm_arr.shape, f"Failed for key={key}"
assert np.allclose(hf_arr, vllm_arr), f"Failed for key={key}"
@pytest.mark.xfail(
reason="Inconsistent image processor being used due to lack "
"of support for dynamic image token replacement")
@pytest.mark.parametrize("dtype", ["half", "float"])
def test_llava_next_image_processor(image_assets, dtype):
MODEL_NAME = "llava-hf/llava-v1.6-34b-hf"
IMAGE_HEIGHT = IMAGE_WIDTH = 560
hf_processor = LlavaNextImageProcessor.from_pretrained(MODEL_NAME)
assert isinstance(hf_processor, LlavaNextImageProcessor)
model_config = ModelConfig(
model=MODEL_NAME,
tokenizer=MODEL_NAME,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype=dtype,
revision=None,
)
vlm_config = VisionLanguageConfig(
image_input_type=VisionLanguageConfig.ImageInputType.PIXEL_VALUES,
image_token_id=64000,
image_input_shape=(1, 3, IMAGE_HEIGHT, IMAGE_WIDTH),
image_feature_size=2928,
image_processor=MODEL_NAME,
image_processor_revision=None,
)
for asset in image_assets:
hf_result = hf_processor.preprocess(
asset.pil_image,
return_tensors="pt",
).to(dtype=_STR_DTYPE_TO_TORCH_DTYPE[dtype])
vllm_result = MULTIMODAL_REGISTRY.process_input(
ImagePixelData(asset.pil_image),
model_config=model_config,
vlm_config=vlm_config,
)
assert hf_result.keys() == vllm_result.keys()
for key, hf_tensor in hf_result.items():
hf_arr: np.ndarray = hf_tensor.numpy()
vllm_arr: np.ndarray = vllm_result[key].numpy()
assert hf_arr.shape == vllm_arr.shape, f"Failed for key={key}"
assert np.allclose(hf_arr, vllm_arr), f"Failed for key={key}"
@pytest.mark.xfail(
reason="Example image pixels were not processed using HuggingFace")
@pytest.mark.parametrize("dtype", ["float"])
def test_image_pixel_types(image_assets, dtype):
MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
IMAGE_HEIGHT = IMAGE_WIDTH = 560
model_config = ModelConfig(
model=MODEL_NAME,
tokenizer=MODEL_NAME,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype=dtype,
revision=None,
)
vlm_config = VisionLanguageConfig(
image_input_type=VisionLanguageConfig.ImageInputType.PIXEL_VALUES,
image_token_id=32000,
image_input_shape=(1, 3, IMAGE_HEIGHT, IMAGE_WIDTH),
image_feature_size=576,
image_processor=MODEL_NAME,
image_processor_revision=None,
)
for asset in image_assets:
image_result = MULTIMODAL_REGISTRY.process_input(
ImagePixelData(asset.pil_image),
model_config=model_config,
vlm_config=vlm_config,
)
tensor_result = MULTIMODAL_REGISTRY.process_input(
ImagePixelData(asset.pixel_values),
model_config=model_config,
vlm_config=vlm_config,
)
assert image_result.keys() == tensor_result.keys()
for key, image_arr in image_result.items():
tensor_arr: np.ndarray = tensor_result[key].numpy()
assert image_arr.shape == tensor_arr.shape, f"Failed for key={key}"
assert np.allclose(image_arr, tensor_arr), f"Failed for key={key}"