126 lines
4.8 KiB
Python
126 lines
4.8 KiB
Python
from typing import List, Tuple
|
|
|
|
import pytest
|
|
from transformers import AutoTokenizer
|
|
|
|
from vllm.config import VisionLanguageConfig
|
|
|
|
from ..conftest import IMAGE_ASSETS
|
|
|
|
pytestmark = pytest.mark.vlm
|
|
|
|
_PREFACE = (
|
|
"A chat between a curious human and an artificial intelligence assistant. "
|
|
"The assistant gives helpful, detailed, and polite answers to the human's "
|
|
"questions.")
|
|
|
|
# The image token is placed before "user" on purpose so that the test can pass
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
"stop_sign":
|
|
f"{_PREFACE} <image>\nUSER: What's the content of the image?\nASSISTANT:",
|
|
"cherry_blossom":
|
|
f"{_PREFACE} <image>\nUSER: What is the season?\nASSISTANT:",
|
|
})
|
|
|
|
|
|
def iter_llava_next_configs(model_name: str):
|
|
image_hw_to_feature_size = {
|
|
(336, 336): 1176,
|
|
(672, 672): 2928,
|
|
(1344, 336): 1944,
|
|
(336, 1344): 1890,
|
|
}
|
|
|
|
for (h, w), f in image_hw_to_feature_size.items():
|
|
for input_type, input_shape in [
|
|
(VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)),
|
|
]:
|
|
yield (model_name,
|
|
VisionLanguageConfig(image_input_type=input_type,
|
|
image_feature_size=f,
|
|
image_token_id=32000,
|
|
image_input_shape=input_shape,
|
|
image_processor=model_name,
|
|
image_processor_revision=None))
|
|
|
|
|
|
model_and_vl_config = [
|
|
*iter_llava_next_configs("llava-hf/llava-v1.6-vicuna-7b-hf"),
|
|
]
|
|
|
|
|
|
def vllm_to_hf_output(vllm_output: Tuple[List[int], str],
|
|
vlm_config: VisionLanguageConfig, model_id: str):
|
|
"""Sanitize vllm output to be comparable with hf output.
|
|
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
|
|
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
|
|
It also reduces `output_str` from "<image><image>bla" to "bla".
|
|
"""
|
|
output_ids, output_str = vllm_output
|
|
image_token_id = vlm_config.image_token_id
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
image_token_str = tokenizer.decode(image_token_id)
|
|
|
|
hf_output_ids = [
|
|
token_id for idx, token_id in enumerate(output_ids)
|
|
if token_id != image_token_id or output_ids[idx - 1] != image_token_id
|
|
]
|
|
hf_output_str = output_str \
|
|
.replace(image_token_str * vlm_config.image_feature_size, " ")
|
|
|
|
return hf_output_ids, hf_output_str
|
|
|
|
|
|
@pytest.mark.xfail(
|
|
reason="Inconsistent image processor being used due to lack "
|
|
"of support for dynamic image token replacement")
|
|
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
def test_models(hf_runner, vllm_runner, image_assets, model_and_config,
|
|
dtype: str, max_tokens: int) -> None:
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
All the image fixtures for the test is under tests/images.
|
|
For huggingface runner, we provide the PIL images as input.
|
|
For vllm runner, we provide MultiModalData objects and corresponding
|
|
vision language config as input.
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
The text output is sanitized to be able to compare with hf.
|
|
"""
|
|
model_id, vlm_config = model_and_config
|
|
hf_images = [asset.for_hf() for asset in image_assets]
|
|
vllm_images = [asset.for_vllm(vlm_config) for asset in image_assets]
|
|
|
|
with hf_runner(model_id, dtype=dtype, is_vision_model=True) as hf_model:
|
|
hf_outputs = hf_model.generate_greedy(HF_IMAGE_PROMPTS,
|
|
max_tokens,
|
|
images=hf_images)
|
|
|
|
vllm_image_prompts = [
|
|
p.replace("<image>", "<image>" * vlm_config.image_feature_size)
|
|
for p in HF_IMAGE_PROMPTS
|
|
]
|
|
|
|
with vllm_runner(
|
|
model_id,
|
|
dtype=dtype,
|
|
# should be greater than image_feature_size
|
|
max_model_len=4096,
|
|
enforce_eager=True,
|
|
**vlm_config.as_cli_args_dict(),
|
|
) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts,
|
|
max_tokens,
|
|
images=vllm_images)
|
|
|
|
for i in range(len(HF_IMAGE_PROMPTS)):
|
|
hf_output_ids, hf_output_str = hf_outputs[i]
|
|
vllm_output_ids, vllm_output_str = vllm_to_hf_output(
|
|
vllm_outputs[i], vlm_config, model_id)
|
|
assert hf_output_str == vllm_output_str, (
|
|
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
|
|
assert hf_output_ids == vllm_output_ids, (
|
|
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
|