vllm/tests/entrypoints/openai/test_metrics.py
Robert Shaw e3b318216d
[ Bugfix ] Fix Prometheus Metrics With zeromq Frontend (#7279)
Co-authored-by: Nick Hill <nickhill@us.ibm.com>
2024-08-18 20:19:48 +00:00

180 lines
6.2 KiB
Python

from http import HTTPStatus
import openai
import pytest
import requests
from prometheus_client.parser import text_string_to_metric_families
from transformers import AutoTokenizer
from ...utils import RemoteOpenAIServer
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
@pytest.fixture(scope="module")
def default_server_args():
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"1024",
"--enforce-eager",
"--max-num-seqs",
"128",
]
@pytest.fixture(scope="module",
params=[
"",
"--enable-chunked-prefill",
"--disable-frontend-multiprocessing",
])
def client(default_server_args, request):
if request.param:
default_server_args.append(request.param)
with RemoteOpenAIServer(MODEL_NAME, default_server_args) as remote_server:
yield remote_server.get_async_client()
_PROMPT = "Hello my name is Robert and I love magic"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
_TOKENIZED_PROMPT = tokenizer(_PROMPT)["input_ids"]
_NUM_REQUESTS = 10
_NUM_PROMPT_TOKENS_PER_REQUEST = len(_TOKENIZED_PROMPT)
_NUM_GENERATION_TOKENS_PER_REQUEST = 10
# {metric_family: [(suffix, expected_value)]}
EXPECTED_VALUES = {
"vllm:time_to_first_token_seconds": [("_count", _NUM_REQUESTS)],
"vllm:time_per_output_token_seconds":
[("_count", _NUM_REQUESTS * (_NUM_GENERATION_TOKENS_PER_REQUEST - 1))],
"vllm:e2e_request_latency_seconds": [("_count", _NUM_REQUESTS)],
"vllm:request_prompt_tokens":
[("_sum", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST),
("_count", _NUM_REQUESTS)],
"vllm:request_generation_tokens":
[("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST),
("_count", _NUM_REQUESTS)],
"vllm:request_params_n": [("_count", _NUM_REQUESTS)],
"vllm:request_params_best_of": [("_count", _NUM_REQUESTS)],
"vllm:prompt_tokens": [("_total",
_NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)],
"vllm:generation_tokens":
[("_total", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)],
"vllm:request_success": [("_total", _NUM_REQUESTS)],
}
@pytest.mark.asyncio
async def test_metrics_counts(client: openai.AsyncOpenAI):
base_url = str(client.base_url)[:-3].strip("/")
for _ in range(_NUM_REQUESTS):
# sending a request triggers the metrics to be logged.
await client.completions.create(
model=MODEL_NAME,
prompt=_TOKENIZED_PROMPT,
max_tokens=_NUM_GENERATION_TOKENS_PER_REQUEST)
response = requests.get(base_url + "/metrics")
print(response.text)
assert response.status_code == HTTPStatus.OK
# Loop over all expected metric_families
for metric_family, suffix_values_list in EXPECTED_VALUES.items():
found_metric = False
# Check to see if the metric_family is found in the prom endpoint.
for family in text_string_to_metric_families(response.text):
if family.name == metric_family:
found_metric = True
# Check that each suffix is found in the prom endpoint.
for suffix, expected_value in suffix_values_list:
metric_name_w_suffix = f"{metric_family}{suffix}"
found_suffix = False
for sample in family.samples:
if sample.name == metric_name_w_suffix:
found_suffix = True
# For each suffix, value sure the value matches
# what we expect.
assert sample.value == expected_value, (
f"{metric_name_w_suffix} expected value of "
f"{expected_value} did not match found value "
f"{sample.value}")
break
assert found_suffix, (
f"Did not find {metric_name_w_suffix} in prom endpoint"
)
break
assert found_metric, (f"Did not find {metric_family} in prom endpoint")
EXPECTED_METRICS = [
"vllm:num_requests_running",
"vllm:num_requests_swapped",
"vllm:num_requests_waiting",
"vllm:gpu_cache_usage_perc",
"vllm:cpu_cache_usage_perc",
"vllm:time_to_first_token_seconds_sum",
"vllm:time_to_first_token_seconds_bucket",
"vllm:time_to_first_token_seconds_count",
"vllm:time_per_output_token_seconds_sum",
"vllm:time_per_output_token_seconds_bucket",
"vllm:time_per_output_token_seconds_count",
"vllm:e2e_request_latency_seconds_sum",
"vllm:e2e_request_latency_seconds_bucket",
"vllm:e2e_request_latency_seconds_count",
"vllm:request_prompt_tokens_sum",
"vllm:request_prompt_tokens_bucket",
"vllm:request_prompt_tokens_count",
"vllm:request_generation_tokens_sum",
"vllm:request_generation_tokens_bucket",
"vllm:request_generation_tokens_count",
"vllm:request_params_n_sum",
"vllm:request_params_n_bucket",
"vllm:request_params_n_count",
"vllm:request_params_best_of_sum",
"vllm:request_params_best_of_bucket",
"vllm:request_params_best_of_count",
"vllm:num_preemptions_total",
"vllm:prompt_tokens_total",
"vllm:generation_tokens_total",
"vllm:request_success_total",
"vllm:cache_config_info",
# labels in cache_config_info
"block_size",
"cache_dtype",
"cpu_offload_gb",
"enable_prefix_caching",
"gpu_memory_utilization",
"num_cpu_blocks",
"num_gpu_blocks",
"num_gpu_blocks_override",
"sliding_window",
"swap_space_bytes",
]
@pytest.mark.asyncio
async def test_metrics_exist(client: openai.AsyncOpenAI):
base_url = str(client.base_url)[:-3].strip("/")
# sending a request triggers the metrics to be logged.
await client.completions.create(model=MODEL_NAME,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0)
response = requests.get(base_url + "/metrics")
assert response.status_code == HTTPStatus.OK
for metric in EXPECTED_METRICS:
assert metric in response.text