Kevin H. Luu 64ea24d0b3
[ci/lint] Add back default arg for pre-commit (#12279)
Signed-off-by: kevin <kevin@anyscale.com>
2025-01-22 01:15:27 +00:00

138 lines
4.2 KiB
Python

"""
Tests gguf models against unquantized models generations
Note: To pass the test, quantization higher than Q4 should be used
"""
import os
from typing import List, NamedTuple, Type
import pytest
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer
from tests.quantization.utils import is_quant_method_supported
from ....conftest import VllmRunner
from ...utils import check_logprobs_close
os.environ["TOKENIZERS_PARALLELISM"] = "true"
MAX_MODEL_LEN = 1024
class GGUFTestConfig(NamedTuple):
original_model: str
gguf_repo: str
gguf_filename: str
@property
def gguf_model(self):
return hf_hub_download(self.gguf_repo, filename=self.gguf_filename)
LLAMA_CONFIG = GGUFTestConfig(
original_model="meta-llama/Llama-3.2-1B-Instruct",
gguf_repo="bartowski/Llama-3.2-1B-Instruct-GGUF",
gguf_filename="Llama-3.2-1B-Instruct-IQ4_XS.gguf",
)
QWEN2_CONFIG = GGUFTestConfig(
original_model="Qwen/Qwen2.5-1.5B-Instruct",
gguf_repo="Qwen/Qwen2.5-1.5B-Instruct-GGUF",
gguf_filename="qwen2.5-1.5b-instruct-q6_k.gguf",
)
PHI3_CONFIG = GGUFTestConfig(
original_model="microsoft/Phi-3.5-mini-instruct",
gguf_repo="bartowski/Phi-3.5-mini-instruct-GGUF",
gguf_filename="Phi-3.5-mini-instruct-IQ4_XS.gguf",
)
GPT2_CONFIG = GGUFTestConfig(
original_model="openai-community/gpt2-large",
gguf_repo="QuantFactory/gpt2-large-GGUF",
gguf_filename="gpt2-large.Q4_K_M.gguf",
)
STABLELM_CONFIG = GGUFTestConfig(
original_model="stabilityai/stablelm-3b-4e1t",
gguf_repo="afrideva/stablelm-3b-4e1t-GGUF",
gguf_filename="stablelm-3b-4e1t.q4_k_m.gguf",
)
STARCODER_CONFIG = GGUFTestConfig(
original_model="bigcode/starcoder2-3b",
gguf_repo="QuantFactory/starcoder2-3b-GGUF",
gguf_filename="starcoder2-3b.Q6_K.gguf",
)
DOLPHIN_CONFIG = GGUFTestConfig(
# Test VocabParallelEmbedding sharding issue.
original_model="cognitivecomputations/TinyDolphin-2.8-1.1b",
gguf_repo="tsunemoto/TinyDolphin-2.8-1.1b-GGUF",
gguf_filename="tinydolphin-2.8-1.1b.Q6_K.gguf",
)
MODELS = [
LLAMA_CONFIG, QWEN2_CONFIG, PHI3_CONFIG, GPT2_CONFIG, STABLELM_CONFIG,
DOLPHIN_CONFIG
# STARCODER_CONFIG, # broken
]
@pytest.mark.skipif(not is_quant_method_supported("gguf"),
reason="gguf is not supported on this GPU type.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("tp_size", [1, 2])
def test_models(
num_gpus_available: int,
vllm_runner: Type[VllmRunner],
example_prompts: List[str],
model: GGUFTestConfig,
dtype: str,
max_tokens: int,
num_logprobs: int,
tp_size: int,
) -> None:
if num_gpus_available < tp_size:
pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
tokenizer = AutoTokenizer.from_pretrained(model.original_model)
if tokenizer.chat_template is not None:
messages = [[{
'role': 'user',
'content': prompt
}] for prompt in example_prompts]
example_prompts = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
# Run unquantized model.
with vllm_runner(
model_name=model.original_model,
enforce_eager=True, # faster tests
dtype=dtype,
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=tp_size) as original_model:
original_outputs = original_model.generate_greedy_logprobs(
example_prompts[:-1], max_tokens, num_logprobs)
# Run gguf model.
with vllm_runner(model_name=model.gguf_model,
enforce_eager=True,
tokenizer_name=model.original_model,
dtype=dtype,
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=tp_size) as gguf_model:
gguf_outputs = gguf_model.generate_greedy_logprobs(
example_prompts[:-1], max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=original_outputs,
outputs_1_lst=gguf_outputs,
name_0="original",
name_1="gguf",
)