
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
639 lines
19 KiB
Python
639 lines
19 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from contextlib import nullcontext
|
|
from typing import cast
|
|
from unittest.mock import MagicMock
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from vllm.config import ModelConfig
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
# yapf conflicts with isort for this block
|
|
# yapf: disable
|
|
from vllm.multimodal.processing import (PlaceholderFeaturesInfo,
|
|
PromptReplacement,
|
|
find_mm_placeholders,
|
|
find_text_matches, find_token_matches,
|
|
iter_token_matches,
|
|
replace_text_matches,
|
|
replace_token_matches)
|
|
# yapf: enable
|
|
from vllm.multimodal.profiling import MultiModalProfiler
|
|
from vllm.multimodal.utils import cached_get_tokenizer
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
|
from vllm.utils import full_groupby
|
|
|
|
from .utils import random_image
|
|
|
|
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
("token_ids", "match_ids", "expected"),
|
|
[
|
|
([], [], []),
|
|
([], [32000], []),
|
|
(
|
|
[32000, 32000, 32000],
|
|
[32000],
|
|
[
|
|
{ "start_idx": 0, "end_idx": 1 },
|
|
{ "start_idx": 1, "end_idx": 2 },
|
|
{ "start_idx": 2, "end_idx": 3 },
|
|
],
|
|
),
|
|
(
|
|
[32000, 32000, 32000],
|
|
[32000, 32000],
|
|
[{ "start_idx": 0, "end_idx": 2 }],
|
|
),
|
|
(
|
|
[32000, 32000, 32000],
|
|
[32000, 32000, 32000],
|
|
[{ "start_idx": 0, "end_idx": 3 }],
|
|
),
|
|
(
|
|
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
|
|
[28747, 32000],
|
|
[
|
|
{ "start_idx": 1, "end_idx": 3 },
|
|
{ "start_idx": 6, "end_idx": 8 },
|
|
],
|
|
),
|
|
(
|
|
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
|
|
[28747, 32000, 32000, 32000],
|
|
[
|
|
{ "start_idx": 1, "end_idx": 5 },
|
|
],
|
|
),
|
|
(
|
|
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
|
|
[28747, 0, 32000],
|
|
[],
|
|
),
|
|
],
|
|
)
|
|
# yapf: enable
|
|
def test_iter_token_matches(token_ids, match_ids, expected):
|
|
result = list(iter_token_matches(token_ids, match_ids))
|
|
|
|
# Manually constructed results
|
|
assert [item._asdict() for item in result] == expected
|
|
|
|
# Invariants
|
|
match_lens = [end - start for start, end in result]
|
|
print("match_lens:", match_lens) # Only displayed on error
|
|
assert all(match_len == len(match_ids) for match_len in match_lens)
|
|
|
|
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
("prompt", "target_by_key", "expected_by_key"),
|
|
[
|
|
(
|
|
[],
|
|
{
|
|
"pattern_1": [],
|
|
"pattern_2": [32000],
|
|
},
|
|
{
|
|
"pattern_1": [],
|
|
"pattern_2": [],
|
|
}
|
|
),
|
|
(
|
|
[32000, 32000, 32000, 32000],
|
|
{
|
|
"pattern_1": [32000],
|
|
"pattern_2": [32000, 32000],
|
|
"pattern_3": [32000, 32000, 32000],
|
|
},
|
|
{
|
|
"pattern_1": [
|
|
{ "start_idx": 0, "end_idx": 1 },
|
|
{ "start_idx": 1, "end_idx": 2 },
|
|
{ "start_idx": 2, "end_idx": 3 },
|
|
{ "start_idx": 3, "end_idx": 4 },
|
|
],
|
|
"pattern_2": [
|
|
{ "start_idx": 0, "end_idx": 2 },
|
|
{ "start_idx": 2, "end_idx": 4 },
|
|
],
|
|
"pattern_3": [
|
|
{ "start_idx": 0, "end_idx": 3 },
|
|
],
|
|
},
|
|
),
|
|
(
|
|
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
|
|
{
|
|
"pattern_1": [28747, 32000],
|
|
"pattern_2": [28747, 32000, 32000, 32000],
|
|
"pattern_3": [28747, 0, 32000],
|
|
},
|
|
{
|
|
"pattern_1": [
|
|
{ "start_idx": 1, "end_idx": 3 },
|
|
{ "start_idx": 6, "end_idx": 8 },
|
|
],
|
|
"pattern_2": [
|
|
{ "start_idx": 1, "end_idx": 5 },
|
|
],
|
|
"pattern_3": [],
|
|
},
|
|
),
|
|
],
|
|
)
|
|
# yapf: enable
|
|
def test_find_token_matches(prompt, target_by_key, expected_by_key):
|
|
# Should not be used since there is nothing to convert to token IDs
|
|
mock_tokenizer = cast(AnyTokenizer, object())
|
|
|
|
prompt_repls = [
|
|
PromptReplacement(key, target, []).bind(mock_tokenizer)
|
|
for key, target in target_by_key.items()
|
|
]
|
|
result = find_token_matches(prompt, prompt_repls)
|
|
|
|
# Only displayed on error
|
|
print("result:", result)
|
|
|
|
# Manually constructed results
|
|
result_groups = dict(full_groupby(result, key=lambda x: x.modality))
|
|
assert {
|
|
key: [
|
|
dict(start_idx=item.start_idx, end_idx=item.end_idx)
|
|
for item in result_groups.get(key, [])
|
|
]
|
|
for key in expected_by_key
|
|
} == expected_by_key
|
|
|
|
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
("prompt", "target_by_key", "expected_by_key"),
|
|
[
|
|
# Detokenized test cases of `test_find_token_matches`
|
|
# using the vocab of llava-hf/llava-v1.6-mistral-7b-hf
|
|
(
|
|
"",
|
|
{
|
|
"pattern_1": "",
|
|
"pattern_2": "<image>",
|
|
},
|
|
{
|
|
"pattern_1": [{ "start_idx": 0, "end_idx": 0 }],
|
|
"pattern_2": [],
|
|
}
|
|
),
|
|
(
|
|
"<image><image><image><image>",
|
|
{
|
|
"pattern_1": "<image>",
|
|
"pattern_2": "<image><image>",
|
|
"pattern_3": "<image><image><image>",
|
|
},
|
|
{
|
|
"pattern_1": [
|
|
{ "start_idx": 0, "end_idx": 7 },
|
|
{ "start_idx": 7, "end_idx": 14 },
|
|
{ "start_idx": 14, "end_idx": 21 },
|
|
{ "start_idx": 21, "end_idx": 28 },
|
|
],
|
|
"pattern_2": [
|
|
{ "start_idx": 0, "end_idx": 14 },
|
|
{ "start_idx": 14, "end_idx": 28 },
|
|
],
|
|
"pattern_3": [
|
|
{ "start_idx": 0, "end_idx": 21 },
|
|
],
|
|
},
|
|
),
|
|
(
|
|
"Image:<image><image><image>Image:<image><image>!",
|
|
{
|
|
"pattern_1": "Image:<image>",
|
|
"pattern_2": "Image:<image><image><image>",
|
|
"pattern_3": "Image:<unk><image>",
|
|
},
|
|
{
|
|
"pattern_1": [
|
|
{ "start_idx": 0, "end_idx": 13 },
|
|
{ "start_idx": 27, "end_idx": 40 },
|
|
],
|
|
"pattern_2": [
|
|
{ "start_idx": 0, "end_idx": 27 },
|
|
],
|
|
"pattern_3": [],
|
|
},
|
|
),
|
|
# Test regex escape
|
|
(
|
|
"<|image|><image><|image|><image>",
|
|
{
|
|
"pattern_1": "<|image|>",
|
|
"pattern_2": "<|image|><image>",
|
|
"pattern_3": "<|image|><image><|image|>",
|
|
},
|
|
{
|
|
"pattern_1": [
|
|
{ "start_idx": 0, "end_idx": 9 },
|
|
{ "start_idx": 16, "end_idx": 25 },
|
|
],
|
|
"pattern_2": [
|
|
{ "start_idx": 0, "end_idx": 16 },
|
|
{ "start_idx": 16, "end_idx": 32 },
|
|
],
|
|
"pattern_3": [
|
|
{ "start_idx": 0, "end_idx": 25 },
|
|
],
|
|
},
|
|
),
|
|
],
|
|
)
|
|
# yapf: enable
|
|
def test_find_text_matches(prompt, target_by_key, expected_by_key):
|
|
# Should not be used since there is nothing to convert to text
|
|
mock_tokenizer = cast(AnyTokenizer, object())
|
|
|
|
prompt_repls = [
|
|
PromptReplacement(key, target, []).bind(mock_tokenizer)
|
|
for key, target in target_by_key.items()
|
|
]
|
|
result = find_text_matches(prompt, prompt_repls)
|
|
|
|
# Only displayed on error
|
|
print("result:", result)
|
|
|
|
# Manually constructed results
|
|
result_groups = dict(full_groupby(result, key=lambda x: x.modality))
|
|
assert {
|
|
key: [
|
|
dict(start_idx=item.start_idx, end_idx=item.end_idx)
|
|
for item in result_groups.get(key, [])
|
|
]
|
|
for key in expected_by_key
|
|
} == expected_by_key
|
|
|
|
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
("prompt", "target_by_key", "repl_by_key"),
|
|
[
|
|
(
|
|
"Image:<image>Image:<image><image>!",
|
|
{
|
|
# We use `<image>` before `Image:` to test matches that
|
|
# occur out of order
|
|
"pattern_1": "<image>",
|
|
"pattern_2": "Image:",
|
|
"pattern_3": "!",
|
|
},
|
|
{
|
|
# Test whether target is confused with replacement
|
|
"pattern_1": "<image><image>",
|
|
# Test empty replacement
|
|
"pattern_2": "",
|
|
# Test dynamic replacement (beyond the form of `unit * count`)
|
|
"pattern_3": "?!?",
|
|
},
|
|
),
|
|
]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
("mm_count", "expected"),
|
|
[
|
|
(0, "Image:<image>Image:<image><image>!"),
|
|
(1, "<image><image>Image:<image><image>?!?"),
|
|
(2, "<image><image><image><image><image>?!?"),
|
|
]
|
|
)
|
|
# yapf: enable
|
|
def test_find_replace_text(
|
|
prompt,
|
|
target_by_key,
|
|
repl_by_key,
|
|
mm_count,
|
|
expected,
|
|
):
|
|
# Should not be used since there is nothing to convert to text
|
|
mock_tokenizer = cast(AnyTokenizer, object())
|
|
|
|
mm_prompt_repls = {
|
|
key: [
|
|
PromptReplacement(key, target,
|
|
repl_by_key[key]).bind(mock_tokenizer)
|
|
]
|
|
for key, target in target_by_key.items()
|
|
}
|
|
mm_matches = {
|
|
key: find_text_matches(prompt, prompt_repls)
|
|
for key, prompt_repls in mm_prompt_repls.items()
|
|
}
|
|
|
|
result = replace_text_matches(
|
|
prompt,
|
|
mm_matches,
|
|
{key: mm_count
|
|
for key in repl_by_key},
|
|
)
|
|
|
|
# Only displayed on error
|
|
print("mm_matches:", mm_matches)
|
|
print("result:", result)
|
|
|
|
# Manually constructed results
|
|
assert result == expected
|
|
|
|
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
("prompt", "target_by_key", "repl_by_key"),
|
|
[
|
|
# Tokenized test cases of `test_find_replace_text`
|
|
# using the vocab of llava-hf/llava-v1.6-mistral-7b-hf
|
|
(
|
|
[1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918],
|
|
{
|
|
# We use `<image>` before `Image:` to test matches that
|
|
# occur out of order
|
|
"pattern_1": [32000],
|
|
"pattern_2": [9833, 28747],
|
|
"pattern_3": [918],
|
|
},
|
|
{
|
|
# Test whether target is confused with replacement
|
|
"pattern_1": [32000, 32000],
|
|
# Test empty replacement
|
|
"pattern_2": [],
|
|
# Test dynamic replacement (beyond the form of `unit * count`)
|
|
"pattern_3": [1550, 918, 1550],
|
|
},
|
|
),
|
|
]
|
|
)
|
|
@pytest.mark.parametrize(
|
|
("mm_count", "expected"),
|
|
[
|
|
(0, [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918]),
|
|
(1, [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550]),
|
|
(2, [1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550]),
|
|
]
|
|
)
|
|
# yapf: enable
|
|
def test_find_replace_tokens(
|
|
prompt,
|
|
target_by_key,
|
|
repl_by_key,
|
|
mm_count,
|
|
expected,
|
|
):
|
|
# Should not be used since there is nothing to convert to tokens
|
|
mock_tokenizer = cast(AnyTokenizer, object())
|
|
|
|
mm_prompt_repls = {
|
|
key: [
|
|
PromptReplacement(key, target,
|
|
repl_by_key[key]).bind(mock_tokenizer)
|
|
]
|
|
for key, target in target_by_key.items()
|
|
}
|
|
mm_matches = {
|
|
key: find_token_matches(prompt, prompt_repls)
|
|
for key, prompt_repls in mm_prompt_repls.items()
|
|
}
|
|
|
|
result = replace_token_matches(
|
|
prompt,
|
|
mm_matches,
|
|
{key: mm_count
|
|
for key in repl_by_key},
|
|
)
|
|
|
|
# Only displayed on error
|
|
print("mm_matches:", mm_matches)
|
|
print("result:", result)
|
|
|
|
# Manually constructed results
|
|
assert result == expected
|
|
|
|
|
|
# yapf: disable
|
|
@pytest.mark.parametrize(
|
|
"repl_by_key",
|
|
[
|
|
{
|
|
"pattern_1": [32000, 32000],
|
|
"pattern_2": [],
|
|
"pattern_3": [1550, 918, 1550],
|
|
# Test different modalities having the same tokens (32000)
|
|
"pattern_4": [32000],
|
|
},
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
("prompt", "expected"),
|
|
[
|
|
(
|
|
[1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918],
|
|
{
|
|
"pattern_1": [
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_1",
|
|
item_idx=0,
|
|
start_idx=6,
|
|
tokens=[32000, 32000],
|
|
),
|
|
],
|
|
"pattern_4": [
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_4",
|
|
item_idx=0,
|
|
start_idx=3,
|
|
tokens=[32000],
|
|
),
|
|
],
|
|
}
|
|
|
|
),
|
|
(
|
|
[1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550],
|
|
{
|
|
"pattern_1": [
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_1",
|
|
item_idx=0,
|
|
start_idx=1,
|
|
tokens=[32000, 32000],
|
|
),
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_1",
|
|
item_idx=1,
|
|
start_idx=5,
|
|
tokens=[32000, 32000],
|
|
),
|
|
],
|
|
"pattern_3": [
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_3",
|
|
item_idx=0,
|
|
start_idx=7,
|
|
tokens=[1550, 918, 1550],
|
|
),
|
|
],
|
|
# No match for pattern_4 as it has lower priority than pattern_1
|
|
}
|
|
),
|
|
(
|
|
[1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550],
|
|
{
|
|
"pattern_1": [
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_1",
|
|
item_idx=0,
|
|
start_idx=1,
|
|
tokens=[32000, 32000],
|
|
),
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_1",
|
|
item_idx=1,
|
|
start_idx=3,
|
|
tokens=[32000, 32000],
|
|
),
|
|
],
|
|
"pattern_4": [
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_4",
|
|
item_idx=0,
|
|
start_idx=5,
|
|
tokens=[32000],
|
|
),
|
|
],
|
|
"pattern_3": [
|
|
PlaceholderFeaturesInfo(
|
|
modality="pattern_3",
|
|
item_idx=0,
|
|
start_idx=6,
|
|
tokens=[1550, 918, 1550],
|
|
),
|
|
],
|
|
}
|
|
),
|
|
]
|
|
)
|
|
# yapf: enable
|
|
def test_find_mm_placeholders(
|
|
repl_by_key,
|
|
prompt,
|
|
expected,
|
|
):
|
|
# Should not be used since there is nothing to convert to tokens
|
|
mock_tokenizer = cast(AnyTokenizer, object())
|
|
|
|
mm_prompt_repls = {
|
|
key: [PromptReplacement(key, [], repl).bind(mock_tokenizer)]
|
|
for key, repl in repl_by_key.items()
|
|
}
|
|
|
|
result = find_mm_placeholders(
|
|
mm_prompt_repls,
|
|
prompt,
|
|
# Effectively match all occurrences in the prompt
|
|
{key: 3
|
|
for key in repl_by_key},
|
|
)
|
|
|
|
# Only displayed on error
|
|
print("result:", result)
|
|
|
|
# Manually constructed results
|
|
assert result == expected
|
|
|
|
|
|
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
|
|
@pytest.mark.parametrize(
|
|
("limit", "num_supported", "is_valid"),
|
|
[(0, 0, True), (0, 1, True), (1, 0, False), (1, 1, True), (1, 2, True),
|
|
(2, 1, False), (2, 2, True)],
|
|
)
|
|
def test_limit_mm_per_prompt_dummy(model_id, limit, num_supported, is_valid):
|
|
limit_mm_per_prompt = {"image": limit}
|
|
|
|
model_config = ModelConfig(
|
|
model=model_id,
|
|
task="auto",
|
|
tokenizer=model_id,
|
|
tokenizer_mode="auto",
|
|
trust_remote_code=False,
|
|
seed=0,
|
|
dtype="half",
|
|
revision=None,
|
|
limit_mm_per_prompt=limit_mm_per_prompt,
|
|
)
|
|
|
|
processor = MULTIMODAL_REGISTRY.create_processor(
|
|
model_config,
|
|
tokenizer=cached_get_tokenizer(model_config.tokenizer),
|
|
)
|
|
profiler = MultiModalProfiler(processor)
|
|
|
|
mock_supported_mm_limits = MagicMock(return_value={"image": num_supported})
|
|
processor.info.get_supported_mm_limits = mock_supported_mm_limits
|
|
|
|
if is_valid:
|
|
exc_ctx = nullcontext()
|
|
else:
|
|
exc_ctx = pytest.raises(ValueError, match="this model only supports")
|
|
|
|
with exc_ctx:
|
|
profiler.get_dummy_data(model_config.max_model_len)
|
|
|
|
|
|
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
|
|
@pytest.mark.parametrize(
|
|
("num_images", "limit", "is_valid"),
|
|
[(0, 0, True), (0, 1, True), (1, 0, False), (1, 1, True), (1, 2, True),
|
|
(2, 1, False), (2, 2, True)],
|
|
)
|
|
def test_limit_mm_per_prompt_apply(model_id, num_images, limit, is_valid):
|
|
limit_mm_per_prompt = {"image": limit}
|
|
|
|
model_config = ModelConfig(
|
|
model=model_id,
|
|
task="auto",
|
|
tokenizer=model_id,
|
|
tokenizer_mode="auto",
|
|
trust_remote_code=False,
|
|
seed=0,
|
|
dtype="half",
|
|
revision=None,
|
|
limit_mm_per_prompt=limit_mm_per_prompt,
|
|
)
|
|
|
|
processor = MULTIMODAL_REGISTRY.create_processor(
|
|
model_config,
|
|
tokenizer=cached_get_tokenizer(model_config.tokenizer),
|
|
)
|
|
|
|
rng = np.random.RandomState(0)
|
|
image = random_image(rng, min_wh=128, max_wh=256)
|
|
if num_images == 0:
|
|
mm_data = {}
|
|
elif num_images == 1:
|
|
mm_data = {"image": image}
|
|
else:
|
|
mm_data = {"image": [image] * num_images}
|
|
|
|
if is_valid:
|
|
exc_ctx = nullcontext()
|
|
else:
|
|
exc_ctx = pytest.raises(ValueError, match=f"passed {num_images} image")
|
|
|
|
with exc_ctx:
|
|
processor.apply(
|
|
"<image>" * num_images,
|
|
mm_data=mm_data,
|
|
hf_processor_mm_kwargs={},
|
|
)
|