vllm/tests/multimodal/test_processing.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

639 lines
19 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from contextlib import nullcontext
from typing import cast
from unittest.mock import MagicMock
import numpy as np
import pytest
from vllm.config import ModelConfig
from vllm.multimodal import MULTIMODAL_REGISTRY
# yapf conflicts with isort for this block
# yapf: disable
from vllm.multimodal.processing import (PlaceholderFeaturesInfo,
PromptReplacement,
find_mm_placeholders,
find_text_matches, find_token_matches,
iter_token_matches,
replace_text_matches,
replace_token_matches)
# yapf: enable
from vllm.multimodal.profiling import MultiModalProfiler
from vllm.multimodal.utils import cached_get_tokenizer
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils import full_groupby
from .utils import random_image
# yapf: disable
@pytest.mark.parametrize(
("token_ids", "match_ids", "expected"),
[
([], [], []),
([], [32000], []),
(
[32000, 32000, 32000],
[32000],
[
{ "start_idx": 0, "end_idx": 1 },
{ "start_idx": 1, "end_idx": 2 },
{ "start_idx": 2, "end_idx": 3 },
],
),
(
[32000, 32000, 32000],
[32000, 32000],
[{ "start_idx": 0, "end_idx": 2 }],
),
(
[32000, 32000, 32000],
[32000, 32000, 32000],
[{ "start_idx": 0, "end_idx": 3 }],
),
(
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
[28747, 32000],
[
{ "start_idx": 1, "end_idx": 3 },
{ "start_idx": 6, "end_idx": 8 },
],
),
(
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
[28747, 32000, 32000, 32000],
[
{ "start_idx": 1, "end_idx": 5 },
],
),
(
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
[28747, 0, 32000],
[],
),
],
)
# yapf: enable
def test_iter_token_matches(token_ids, match_ids, expected):
result = list(iter_token_matches(token_ids, match_ids))
# Manually constructed results
assert [item._asdict() for item in result] == expected
# Invariants
match_lens = [end - start for start, end in result]
print("match_lens:", match_lens) # Only displayed on error
assert all(match_len == len(match_ids) for match_len in match_lens)
# yapf: disable
@pytest.mark.parametrize(
("prompt", "target_by_key", "expected_by_key"),
[
(
[],
{
"pattern_1": [],
"pattern_2": [32000],
},
{
"pattern_1": [],
"pattern_2": [],
}
),
(
[32000, 32000, 32000, 32000],
{
"pattern_1": [32000],
"pattern_2": [32000, 32000],
"pattern_3": [32000, 32000, 32000],
},
{
"pattern_1": [
{ "start_idx": 0, "end_idx": 1 },
{ "start_idx": 1, "end_idx": 2 },
{ "start_idx": 2, "end_idx": 3 },
{ "start_idx": 3, "end_idx": 4 },
],
"pattern_2": [
{ "start_idx": 0, "end_idx": 2 },
{ "start_idx": 2, "end_idx": 4 },
],
"pattern_3": [
{ "start_idx": 0, "end_idx": 3 },
],
},
),
(
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
{
"pattern_1": [28747, 32000],
"pattern_2": [28747, 32000, 32000, 32000],
"pattern_3": [28747, 0, 32000],
},
{
"pattern_1": [
{ "start_idx": 1, "end_idx": 3 },
{ "start_idx": 6, "end_idx": 8 },
],
"pattern_2": [
{ "start_idx": 1, "end_idx": 5 },
],
"pattern_3": [],
},
),
],
)
# yapf: enable
def test_find_token_matches(prompt, target_by_key, expected_by_key):
# Should not be used since there is nothing to convert to token IDs
mock_tokenizer = cast(AnyTokenizer, object())
prompt_repls = [
PromptReplacement(key, target, []).bind(mock_tokenizer)
for key, target in target_by_key.items()
]
result = find_token_matches(prompt, prompt_repls)
# Only displayed on error
print("result:", result)
# Manually constructed results
result_groups = dict(full_groupby(result, key=lambda x: x.modality))
assert {
key: [
dict(start_idx=item.start_idx, end_idx=item.end_idx)
for item in result_groups.get(key, [])
]
for key in expected_by_key
} == expected_by_key
# yapf: disable
@pytest.mark.parametrize(
("prompt", "target_by_key", "expected_by_key"),
[
# Detokenized test cases of `test_find_token_matches`
# using the vocab of llava-hf/llava-v1.6-mistral-7b-hf
(
"",
{
"pattern_1": "",
"pattern_2": "<image>",
},
{
"pattern_1": [{ "start_idx": 0, "end_idx": 0 }],
"pattern_2": [],
}
),
(
"<image><image><image><image>",
{
"pattern_1": "<image>",
"pattern_2": "<image><image>",
"pattern_3": "<image><image><image>",
},
{
"pattern_1": [
{ "start_idx": 0, "end_idx": 7 },
{ "start_idx": 7, "end_idx": 14 },
{ "start_idx": 14, "end_idx": 21 },
{ "start_idx": 21, "end_idx": 28 },
],
"pattern_2": [
{ "start_idx": 0, "end_idx": 14 },
{ "start_idx": 14, "end_idx": 28 },
],
"pattern_3": [
{ "start_idx": 0, "end_idx": 21 },
],
},
),
(
"Image:<image><image><image>Image:<image><image>!",
{
"pattern_1": "Image:<image>",
"pattern_2": "Image:<image><image><image>",
"pattern_3": "Image:<unk><image>",
},
{
"pattern_1": [
{ "start_idx": 0, "end_idx": 13 },
{ "start_idx": 27, "end_idx": 40 },
],
"pattern_2": [
{ "start_idx": 0, "end_idx": 27 },
],
"pattern_3": [],
},
),
# Test regex escape
(
"<|image|><image><|image|><image>",
{
"pattern_1": "<|image|>",
"pattern_2": "<|image|><image>",
"pattern_3": "<|image|><image><|image|>",
},
{
"pattern_1": [
{ "start_idx": 0, "end_idx": 9 },
{ "start_idx": 16, "end_idx": 25 },
],
"pattern_2": [
{ "start_idx": 0, "end_idx": 16 },
{ "start_idx": 16, "end_idx": 32 },
],
"pattern_3": [
{ "start_idx": 0, "end_idx": 25 },
],
},
),
],
)
# yapf: enable
def test_find_text_matches(prompt, target_by_key, expected_by_key):
# Should not be used since there is nothing to convert to text
mock_tokenizer = cast(AnyTokenizer, object())
prompt_repls = [
PromptReplacement(key, target, []).bind(mock_tokenizer)
for key, target in target_by_key.items()
]
result = find_text_matches(prompt, prompt_repls)
# Only displayed on error
print("result:", result)
# Manually constructed results
result_groups = dict(full_groupby(result, key=lambda x: x.modality))
assert {
key: [
dict(start_idx=item.start_idx, end_idx=item.end_idx)
for item in result_groups.get(key, [])
]
for key in expected_by_key
} == expected_by_key
# yapf: disable
@pytest.mark.parametrize(
("prompt", "target_by_key", "repl_by_key"),
[
(
"Image:<image>Image:<image><image>!",
{
# We use `<image>` before `Image:` to test matches that
# occur out of order
"pattern_1": "<image>",
"pattern_2": "Image:",
"pattern_3": "!",
},
{
# Test whether target is confused with replacement
"pattern_1": "<image><image>",
# Test empty replacement
"pattern_2": "",
# Test dynamic replacement (beyond the form of `unit * count`)
"pattern_3": "?!?",
},
),
]
)
@pytest.mark.parametrize(
("mm_count", "expected"),
[
(0, "Image:<image>Image:<image><image>!"),
(1, "<image><image>Image:<image><image>?!?"),
(2, "<image><image><image><image><image>?!?"),
]
)
# yapf: enable
def test_find_replace_text(
prompt,
target_by_key,
repl_by_key,
mm_count,
expected,
):
# Should not be used since there is nothing to convert to text
mock_tokenizer = cast(AnyTokenizer, object())
mm_prompt_repls = {
key: [
PromptReplacement(key, target,
repl_by_key[key]).bind(mock_tokenizer)
]
for key, target in target_by_key.items()
}
mm_matches = {
key: find_text_matches(prompt, prompt_repls)
for key, prompt_repls in mm_prompt_repls.items()
}
result = replace_text_matches(
prompt,
mm_matches,
{key: mm_count
for key in repl_by_key},
)
# Only displayed on error
print("mm_matches:", mm_matches)
print("result:", result)
# Manually constructed results
assert result == expected
# yapf: disable
@pytest.mark.parametrize(
("prompt", "target_by_key", "repl_by_key"),
[
# Tokenized test cases of `test_find_replace_text`
# using the vocab of llava-hf/llava-v1.6-mistral-7b-hf
(
[1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918],
{
# We use `<image>` before `Image:` to test matches that
# occur out of order
"pattern_1": [32000],
"pattern_2": [9833, 28747],
"pattern_3": [918],
},
{
# Test whether target is confused with replacement
"pattern_1": [32000, 32000],
# Test empty replacement
"pattern_2": [],
# Test dynamic replacement (beyond the form of `unit * count`)
"pattern_3": [1550, 918, 1550],
},
),
]
)
@pytest.mark.parametrize(
("mm_count", "expected"),
[
(0, [1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918]),
(1, [1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550]),
(2, [1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550]),
]
)
# yapf: enable
def test_find_replace_tokens(
prompt,
target_by_key,
repl_by_key,
mm_count,
expected,
):
# Should not be used since there is nothing to convert to tokens
mock_tokenizer = cast(AnyTokenizer, object())
mm_prompt_repls = {
key: [
PromptReplacement(key, target,
repl_by_key[key]).bind(mock_tokenizer)
]
for key, target in target_by_key.items()
}
mm_matches = {
key: find_token_matches(prompt, prompt_repls)
for key, prompt_repls in mm_prompt_repls.items()
}
result = replace_token_matches(
prompt,
mm_matches,
{key: mm_count
for key in repl_by_key},
)
# Only displayed on error
print("mm_matches:", mm_matches)
print("result:", result)
# Manually constructed results
assert result == expected
# yapf: disable
@pytest.mark.parametrize(
"repl_by_key",
[
{
"pattern_1": [32000, 32000],
"pattern_2": [],
"pattern_3": [1550, 918, 1550],
# Test different modalities having the same tokens (32000)
"pattern_4": [32000],
},
],
)
@pytest.mark.parametrize(
("prompt", "expected"),
[
(
[1, 9833, 28747, 32000, 9833, 28747, 32000, 32000, 918],
{
"pattern_1": [
PlaceholderFeaturesInfo(
modality="pattern_1",
item_idx=0,
start_idx=6,
tokens=[32000, 32000],
),
],
"pattern_4": [
PlaceholderFeaturesInfo(
modality="pattern_4",
item_idx=0,
start_idx=3,
tokens=[32000],
),
],
}
),
(
[1, 32000, 32000, 9833, 28747, 32000, 32000, 1550, 918, 1550],
{
"pattern_1": [
PlaceholderFeaturesInfo(
modality="pattern_1",
item_idx=0,
start_idx=1,
tokens=[32000, 32000],
),
PlaceholderFeaturesInfo(
modality="pattern_1",
item_idx=1,
start_idx=5,
tokens=[32000, 32000],
),
],
"pattern_3": [
PlaceholderFeaturesInfo(
modality="pattern_3",
item_idx=0,
start_idx=7,
tokens=[1550, 918, 1550],
),
],
# No match for pattern_4 as it has lower priority than pattern_1
}
),
(
[1, 32000, 32000, 32000, 32000, 32000, 1550, 918, 1550],
{
"pattern_1": [
PlaceholderFeaturesInfo(
modality="pattern_1",
item_idx=0,
start_idx=1,
tokens=[32000, 32000],
),
PlaceholderFeaturesInfo(
modality="pattern_1",
item_idx=1,
start_idx=3,
tokens=[32000, 32000],
),
],
"pattern_4": [
PlaceholderFeaturesInfo(
modality="pattern_4",
item_idx=0,
start_idx=5,
tokens=[32000],
),
],
"pattern_3": [
PlaceholderFeaturesInfo(
modality="pattern_3",
item_idx=0,
start_idx=6,
tokens=[1550, 918, 1550],
),
],
}
),
]
)
# yapf: enable
def test_find_mm_placeholders(
repl_by_key,
prompt,
expected,
):
# Should not be used since there is nothing to convert to tokens
mock_tokenizer = cast(AnyTokenizer, object())
mm_prompt_repls = {
key: [PromptReplacement(key, [], repl).bind(mock_tokenizer)]
for key, repl in repl_by_key.items()
}
result = find_mm_placeholders(
mm_prompt_repls,
prompt,
# Effectively match all occurrences in the prompt
{key: 3
for key in repl_by_key},
)
# Only displayed on error
print("result:", result)
# Manually constructed results
assert result == expected
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
@pytest.mark.parametrize(
("limit", "num_supported", "is_valid"),
[(0, 0, True), (0, 1, True), (1, 0, False), (1, 1, True), (1, 2, True),
(2, 1, False), (2, 2, True)],
)
def test_limit_mm_per_prompt_dummy(model_id, limit, num_supported, is_valid):
limit_mm_per_prompt = {"image": limit}
model_config = ModelConfig(
model=model_id,
task="auto",
tokenizer=model_id,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype="half",
revision=None,
limit_mm_per_prompt=limit_mm_per_prompt,
)
processor = MULTIMODAL_REGISTRY.create_processor(
model_config,
tokenizer=cached_get_tokenizer(model_config.tokenizer),
)
profiler = MultiModalProfiler(processor)
mock_supported_mm_limits = MagicMock(return_value={"image": num_supported})
processor.info.get_supported_mm_limits = mock_supported_mm_limits
if is_valid:
exc_ctx = nullcontext()
else:
exc_ctx = pytest.raises(ValueError, match="this model only supports")
with exc_ctx:
profiler.get_dummy_data(model_config.max_model_len)
@pytest.mark.parametrize("model_id", ["llava-hf/llava-v1.6-mistral-7b-hf"])
@pytest.mark.parametrize(
("num_images", "limit", "is_valid"),
[(0, 0, True), (0, 1, True), (1, 0, False), (1, 1, True), (1, 2, True),
(2, 1, False), (2, 2, True)],
)
def test_limit_mm_per_prompt_apply(model_id, num_images, limit, is_valid):
limit_mm_per_prompt = {"image": limit}
model_config = ModelConfig(
model=model_id,
task="auto",
tokenizer=model_id,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype="half",
revision=None,
limit_mm_per_prompt=limit_mm_per_prompt,
)
processor = MULTIMODAL_REGISTRY.create_processor(
model_config,
tokenizer=cached_get_tokenizer(model_config.tokenizer),
)
rng = np.random.RandomState(0)
image = random_image(rng, min_wh=128, max_wh=256)
if num_images == 0:
mm_data = {}
elif num_images == 1:
mm_data = {"image": image}
else:
mm_data = {"image": [image] * num_images}
if is_valid:
exc_ctx = nullcontext()
else:
exc_ctx = pytest.raises(ValueError, match=f"passed {num_images} image")
with exc_ctx:
processor.apply(
"<image>" * num_images,
mm_data=mm_data,
hf_processor_mm_kwargs={},
)