vllm/benchmarks/benchmark_throughput.py
2023-05-28 03:20:05 -07:00

105 lines
3.5 KiB
Python

import argparse
import json
import random
import time
from typing import List, Tuple
from cacheflow import LLM, SamplingParams
from transformers import PreTrainedTokenizerBase
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[List[int], int]]:
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [
data for data in dataset
if len(data["conversations"]) >= 2
]
# Only keep the first two turns of each conversation.
dataset = [
(data["conversations"][0]["value"], data["conversations"][1]["value"])
for data in dataset
]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
tokenized_dataset.append((prompt_token_ids[i], output_len))
# Filter out if the prompt length + output length is greater than 2048.
tokenized_dataset = [
(prompt_token_ids, output_len)
for prompt_token_ids, output_len in tokenized_dataset
if len(prompt_token_ids) + output_len <= 2048
]
# Sample the requests.
sampled_requests = random.sample(tokenized_dataset, num_requests)
return sampled_requests
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
llm = LLM(
model=args.model,
tensor_parallel_size=args.tensor_parallel_size,
seed=args.seed,
)
tokenizer = llm.get_tokenizer()
requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
# Add the requests to the server.
for prompt_token_ids, output_len in requests:
sampling_params = SamplingParams(
n=args.n,
temperature=0.0 if args.use_beam_search else 1.0,
top_p=1.0,
use_beam_search=args.use_beam_search,
ignore_eos=True,
max_tokens=output_len,
)
# FIXME(woosuk): Do not use internal method.
llm._add_request(
prompt="",
sampling_params=sampling_params,
prompt_token_ids=prompt_token_ids,
)
start = time.time()
# FIXME(woosuk): Do use internal method.
llm._run_server(use_tqdm=True)
end = time.time()
total_num_tokens = sum(
len(prompt_token_ids) + output_len
for prompt_token_ids, output_len in requests
)
print(f"Throughput: {total_num_tokens / (end - start):.2f} tokens/s")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--dataset", type=str, required=True,
help="Path to the dataset.")
parser.add_argument("--model", type=str, default="facebook/opt-125m")
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
parser.add_argument("--n", type=int, default=1,
help="Number of generated sequences per prompt.")
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts", type=int, default=1000,
help="Number of prompts to process.")
parser.add_argument("--seed", type=int, default=0)
args = parser.parse_args()
main(args)