105 lines
3.5 KiB
Python
105 lines
3.5 KiB
Python
import argparse
|
|
import json
|
|
import random
|
|
import time
|
|
from typing import List, Tuple
|
|
|
|
from cacheflow import LLM, SamplingParams
|
|
from transformers import PreTrainedTokenizerBase
|
|
|
|
|
|
def sample_requests(
|
|
dataset_path: str,
|
|
num_requests: int,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
) -> List[Tuple[List[int], int]]:
|
|
# Load the dataset.
|
|
with open(dataset_path) as f:
|
|
dataset = json.load(f)
|
|
# Filter out the conversations with less than 2 turns.
|
|
dataset = [
|
|
data for data in dataset
|
|
if len(data["conversations"]) >= 2
|
|
]
|
|
# Only keep the first two turns of each conversation.
|
|
dataset = [
|
|
(data["conversations"][0]["value"], data["conversations"][1]["value"])
|
|
for data in dataset
|
|
]
|
|
|
|
# Tokenize the prompts and completions.
|
|
prompts = [prompt for prompt, _ in dataset]
|
|
prompt_token_ids = tokenizer(prompts).input_ids
|
|
completions = [completion for _, completion in dataset]
|
|
completion_token_ids = tokenizer(completions).input_ids
|
|
tokenized_dataset = []
|
|
for i in range(len(dataset)):
|
|
output_len = len(completion_token_ids[i])
|
|
tokenized_dataset.append((prompt_token_ids[i], output_len))
|
|
# Filter out if the prompt length + output length is greater than 2048.
|
|
tokenized_dataset = [
|
|
(prompt_token_ids, output_len)
|
|
for prompt_token_ids, output_len in tokenized_dataset
|
|
if len(prompt_token_ids) + output_len <= 2048
|
|
]
|
|
|
|
# Sample the requests.
|
|
sampled_requests = random.sample(tokenized_dataset, num_requests)
|
|
return sampled_requests
|
|
|
|
|
|
def main(args: argparse.Namespace):
|
|
print(args)
|
|
random.seed(args.seed)
|
|
|
|
llm = LLM(
|
|
model=args.model,
|
|
tensor_parallel_size=args.tensor_parallel_size,
|
|
seed=args.seed,
|
|
)
|
|
tokenizer = llm.get_tokenizer()
|
|
requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
|
|
|
|
# Add the requests to the server.
|
|
for prompt_token_ids, output_len in requests:
|
|
sampling_params = SamplingParams(
|
|
n=args.n,
|
|
temperature=0.0 if args.use_beam_search else 1.0,
|
|
top_p=1.0,
|
|
use_beam_search=args.use_beam_search,
|
|
ignore_eos=True,
|
|
max_tokens=output_len,
|
|
)
|
|
# FIXME(woosuk): Do not use internal method.
|
|
llm._add_request(
|
|
prompt="",
|
|
sampling_params=sampling_params,
|
|
prompt_token_ids=prompt_token_ids,
|
|
)
|
|
|
|
start = time.time()
|
|
# FIXME(woosuk): Do use internal method.
|
|
llm._run_server(use_tqdm=True)
|
|
end = time.time()
|
|
total_num_tokens = sum(
|
|
len(prompt_token_ids) + output_len
|
|
for prompt_token_ids, output_len in requests
|
|
)
|
|
print(f"Throughput: {total_num_tokens / (end - start):.2f} tokens/s")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
|
|
parser.add_argument("--dataset", type=str, required=True,
|
|
help="Path to the dataset.")
|
|
parser.add_argument("--model", type=str, default="facebook/opt-125m")
|
|
parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
|
|
parser.add_argument("--n", type=int, default=1,
|
|
help="Number of generated sequences per prompt.")
|
|
parser.add_argument("--use-beam-search", action="store_true")
|
|
parser.add_argument("--num-prompts", type=int, default=1000,
|
|
help="Number of prompts to process.")
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
args = parser.parse_args()
|
|
main(args)
|