
- **Add SPDX license headers to python source files** - **Check for SPDX headers using pre-commit** commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745 Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:18:24 2025 -0500 Add SPDX license headers to python source files This commit adds SPDX license headers to python source files as recommended to the project by the Linux Foundation. These headers provide a concise way that is both human and machine readable for communicating license information for each source file. It helps avoid any ambiguity about the license of the code and can also be easily used by tools to help manage license compliance. The Linux Foundation runs license scans against the codebase to help ensure we are in compliance with the licenses of the code we use, including dependencies. Having these headers in place helps that tool do its job. More information can be found on the SPDX site: - https://spdx.dev/learn/handling-license-info/ Signed-off-by: Russell Bryant <rbryant@redhat.com> commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea Author: Russell Bryant <rbryant@redhat.com> Date: Fri Jan 31 14:36:32 2025 -0500 Check for SPDX headers using pre-commit Signed-off-by: Russell Bryant <rbryant@redhat.com> --------- Signed-off-by: Russell Bryant <rbryant@redhat.com>
676 lines
24 KiB
Python
Executable File
676 lines
24 KiB
Python
Executable File
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import ctypes
|
|
import importlib.util
|
|
import logging
|
|
import os
|
|
import re
|
|
import subprocess
|
|
import sys
|
|
from pathlib import Path
|
|
from shutil import which
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
from packaging.version import Version, parse
|
|
from setuptools import Extension, find_packages, setup
|
|
from setuptools.command.build_ext import build_ext
|
|
from setuptools_scm import get_version
|
|
from torch.utils.cpp_extension import CUDA_HOME, ROCM_HOME
|
|
|
|
|
|
def load_module_from_path(module_name, path):
|
|
spec = importlib.util.spec_from_file_location(module_name, path)
|
|
module = importlib.util.module_from_spec(spec)
|
|
sys.modules[module_name] = module
|
|
spec.loader.exec_module(module)
|
|
return module
|
|
|
|
|
|
ROOT_DIR = os.path.dirname(__file__)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# cannot import envs directly because it depends on vllm,
|
|
# which is not installed yet
|
|
envs = load_module_from_path('envs', os.path.join(ROOT_DIR, 'vllm', 'envs.py'))
|
|
|
|
VLLM_TARGET_DEVICE = envs.VLLM_TARGET_DEVICE
|
|
|
|
if sys.platform.startswith("darwin") and VLLM_TARGET_DEVICE != "cpu":
|
|
logger.warning(
|
|
"VLLM_TARGET_DEVICE automatically set to `cpu` due to macOS")
|
|
VLLM_TARGET_DEVICE = "cpu"
|
|
elif not (sys.platform.startswith("linux")
|
|
or sys.platform.startswith("darwin")):
|
|
logger.warning(
|
|
"vLLM only supports Linux platform (including WSL) and MacOS."
|
|
"Building on %s, "
|
|
"so vLLM may not be able to run correctly", sys.platform)
|
|
VLLM_TARGET_DEVICE = "empty"
|
|
|
|
MAIN_CUDA_VERSION = "12.1"
|
|
|
|
|
|
def is_sccache_available() -> bool:
|
|
return which("sccache") is not None
|
|
|
|
|
|
def is_ccache_available() -> bool:
|
|
return which("ccache") is not None
|
|
|
|
|
|
def is_ninja_available() -> bool:
|
|
return which("ninja") is not None
|
|
|
|
|
|
class CMakeExtension(Extension):
|
|
|
|
def __init__(self, name: str, cmake_lists_dir: str = '.', **kwa) -> None:
|
|
super().__init__(name, sources=[], py_limited_api=True, **kwa)
|
|
self.cmake_lists_dir = os.path.abspath(cmake_lists_dir)
|
|
|
|
|
|
class cmake_build_ext(build_ext):
|
|
# A dict of extension directories that have been configured.
|
|
did_config: Dict[str, bool] = {}
|
|
|
|
#
|
|
# Determine number of compilation jobs and optionally nvcc compile threads.
|
|
#
|
|
def compute_num_jobs(self):
|
|
# `num_jobs` is either the value of the MAX_JOBS environment variable
|
|
# (if defined) or the number of CPUs available.
|
|
num_jobs = envs.MAX_JOBS
|
|
if num_jobs is not None:
|
|
num_jobs = int(num_jobs)
|
|
logger.info("Using MAX_JOBS=%d as the number of jobs.", num_jobs)
|
|
else:
|
|
try:
|
|
# os.sched_getaffinity() isn't universally available, so fall
|
|
# back to os.cpu_count() if we get an error here.
|
|
num_jobs = len(os.sched_getaffinity(0))
|
|
except AttributeError:
|
|
num_jobs = os.cpu_count()
|
|
|
|
nvcc_threads = None
|
|
if _is_cuda() and get_nvcc_cuda_version() >= Version("11.2"):
|
|
# `nvcc_threads` is either the value of the NVCC_THREADS
|
|
# environment variable (if defined) or 1.
|
|
# when it is set, we reduce `num_jobs` to avoid
|
|
# overloading the system.
|
|
nvcc_threads = envs.NVCC_THREADS
|
|
if nvcc_threads is not None:
|
|
nvcc_threads = int(nvcc_threads)
|
|
logger.info(
|
|
"Using NVCC_THREADS=%d as the number of nvcc threads.",
|
|
nvcc_threads)
|
|
else:
|
|
nvcc_threads = 1
|
|
num_jobs = max(1, num_jobs // nvcc_threads)
|
|
|
|
return num_jobs, nvcc_threads
|
|
|
|
#
|
|
# Perform cmake configuration for a single extension.
|
|
#
|
|
def configure(self, ext: CMakeExtension) -> None:
|
|
# If we've already configured using the CMakeLists.txt for
|
|
# this extension, exit early.
|
|
if ext.cmake_lists_dir in cmake_build_ext.did_config:
|
|
return
|
|
|
|
cmake_build_ext.did_config[ext.cmake_lists_dir] = True
|
|
|
|
# Select the build type.
|
|
# Note: optimization level + debug info are set by the build type
|
|
default_cfg = "Debug" if self.debug else "RelWithDebInfo"
|
|
cfg = envs.CMAKE_BUILD_TYPE or default_cfg
|
|
|
|
cmake_args = [
|
|
'-DCMAKE_BUILD_TYPE={}'.format(cfg),
|
|
'-DVLLM_TARGET_DEVICE={}'.format(VLLM_TARGET_DEVICE),
|
|
]
|
|
|
|
verbose = envs.VERBOSE
|
|
if verbose:
|
|
cmake_args += ['-DCMAKE_VERBOSE_MAKEFILE=ON']
|
|
|
|
if is_sccache_available():
|
|
cmake_args += [
|
|
'-DCMAKE_C_COMPILER_LAUNCHER=sccache',
|
|
'-DCMAKE_CXX_COMPILER_LAUNCHER=sccache',
|
|
'-DCMAKE_CUDA_COMPILER_LAUNCHER=sccache',
|
|
'-DCMAKE_HIP_COMPILER_LAUNCHER=sccache',
|
|
]
|
|
elif is_ccache_available():
|
|
cmake_args += [
|
|
'-DCMAKE_C_COMPILER_LAUNCHER=ccache',
|
|
'-DCMAKE_CXX_COMPILER_LAUNCHER=ccache',
|
|
'-DCMAKE_CUDA_COMPILER_LAUNCHER=ccache',
|
|
'-DCMAKE_HIP_COMPILER_LAUNCHER=ccache',
|
|
]
|
|
|
|
# Pass the python executable to cmake so it can find an exact
|
|
# match.
|
|
cmake_args += ['-DVLLM_PYTHON_EXECUTABLE={}'.format(sys.executable)]
|
|
|
|
# Pass the python path to cmake so it can reuse the build dependencies
|
|
# on subsequent calls to python.
|
|
cmake_args += ['-DVLLM_PYTHON_PATH={}'.format(":".join(sys.path))]
|
|
|
|
# Override the base directory for FetchContent downloads to $ROOT/.deps
|
|
# This allows sharing dependencies between profiles,
|
|
# and plays more nicely with sccache.
|
|
# To override this, set the FETCHCONTENT_BASE_DIR environment variable.
|
|
fc_base_dir = os.path.join(ROOT_DIR, ".deps")
|
|
fc_base_dir = os.environ.get("FETCHCONTENT_BASE_DIR", fc_base_dir)
|
|
cmake_args += ['-DFETCHCONTENT_BASE_DIR={}'.format(fc_base_dir)]
|
|
|
|
#
|
|
# Setup parallelism and build tool
|
|
#
|
|
num_jobs, nvcc_threads = self.compute_num_jobs()
|
|
|
|
if nvcc_threads:
|
|
cmake_args += ['-DNVCC_THREADS={}'.format(nvcc_threads)]
|
|
|
|
if is_ninja_available():
|
|
build_tool = ['-G', 'Ninja']
|
|
cmake_args += [
|
|
'-DCMAKE_JOB_POOL_COMPILE:STRING=compile',
|
|
'-DCMAKE_JOB_POOLS:STRING=compile={}'.format(num_jobs),
|
|
]
|
|
else:
|
|
# Default build tool to whatever cmake picks.
|
|
build_tool = []
|
|
subprocess.check_call(
|
|
['cmake', ext.cmake_lists_dir, *build_tool, *cmake_args],
|
|
cwd=self.build_temp)
|
|
|
|
def build_extensions(self) -> None:
|
|
# Ensure that CMake is present and working
|
|
try:
|
|
subprocess.check_output(['cmake', '--version'])
|
|
except OSError as e:
|
|
raise RuntimeError('Cannot find CMake executable') from e
|
|
|
|
# Create build directory if it does not exist.
|
|
if not os.path.exists(self.build_temp):
|
|
os.makedirs(self.build_temp)
|
|
|
|
targets = []
|
|
|
|
def target_name(s: str) -> str:
|
|
return s.removeprefix("vllm.").removeprefix("vllm_flash_attn.")
|
|
|
|
# Build all the extensions
|
|
for ext in self.extensions:
|
|
self.configure(ext)
|
|
targets.append(target_name(ext.name))
|
|
|
|
num_jobs, _ = self.compute_num_jobs()
|
|
|
|
build_args = [
|
|
"--build",
|
|
".",
|
|
f"-j={num_jobs}",
|
|
*[f"--target={name}" for name in targets],
|
|
]
|
|
|
|
subprocess.check_call(["cmake", *build_args], cwd=self.build_temp)
|
|
|
|
# Install the libraries
|
|
for ext in self.extensions:
|
|
# Install the extension into the proper location
|
|
outdir = Path(self.get_ext_fullpath(ext.name)).parent.absolute()
|
|
|
|
# Skip if the install directory is the same as the build directory
|
|
if outdir == self.build_temp:
|
|
continue
|
|
|
|
# CMake appends the extension prefix to the install path,
|
|
# and outdir already contains that prefix, so we need to remove it.
|
|
# We assume only the final component of extension prefix is added by
|
|
# CMake, this is currently true for current extensions but may not
|
|
# always be the case.
|
|
prefix = outdir
|
|
if '.' in ext.name:
|
|
prefix = prefix.parent
|
|
|
|
# prefix here should actually be the same for all components
|
|
install_args = [
|
|
"cmake", "--install", ".", "--prefix", prefix, "--component",
|
|
target_name(ext.name)
|
|
]
|
|
subprocess.check_call(install_args, cwd=self.build_temp)
|
|
|
|
def run(self):
|
|
# First, run the standard build_ext command to compile the extensions
|
|
super().run()
|
|
|
|
# copy vllm/vllm_flash_attn/*.py from self.build_lib to current
|
|
# directory so that they can be included in the editable build
|
|
import glob
|
|
files = glob.glob(
|
|
os.path.join(self.build_lib, "vllm", "vllm_flash_attn", "*.py"))
|
|
for file in files:
|
|
dst_file = os.path.join("vllm/vllm_flash_attn",
|
|
os.path.basename(file))
|
|
print(f"Copying {file} to {dst_file}")
|
|
self.copy_file(file, dst_file)
|
|
|
|
|
|
class repackage_wheel(build_ext):
|
|
"""Extracts libraries and other files from an existing wheel."""
|
|
default_wheel = "https://wheels.vllm.ai/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl"
|
|
|
|
def run(self) -> None:
|
|
wheel_location = os.getenv("VLLM_PRECOMPILED_WHEEL_LOCATION",
|
|
self.default_wheel)
|
|
|
|
assert _is_cuda(
|
|
), "VLLM_USE_PRECOMPILED is only supported for CUDA builds"
|
|
|
|
import zipfile
|
|
|
|
if os.path.isfile(wheel_location):
|
|
wheel_path = wheel_location
|
|
print(f"Using existing wheel={wheel_path}")
|
|
else:
|
|
# Download the wheel from a given URL, assume
|
|
# the filename is the last part of the URL
|
|
wheel_filename = wheel_location.split("/")[-1]
|
|
|
|
import tempfile
|
|
|
|
# create a temporary directory to store the wheel
|
|
temp_dir = tempfile.mkdtemp(prefix="vllm-wheels")
|
|
wheel_path = os.path.join(temp_dir, wheel_filename)
|
|
|
|
print(f"Downloading wheel from {wheel_location} to {wheel_path}")
|
|
|
|
from urllib.request import urlretrieve
|
|
|
|
try:
|
|
urlretrieve(wheel_location, filename=wheel_path)
|
|
except Exception as e:
|
|
from setuptools.errors import SetupError
|
|
|
|
raise SetupError(
|
|
f"Failed to get vLLM wheel from {wheel_location}") from e
|
|
|
|
with zipfile.ZipFile(wheel_path) as wheel:
|
|
files_to_copy = [
|
|
"vllm/_C.abi3.so",
|
|
"vllm/_moe_C.abi3.so",
|
|
"vllm/vllm_flash_attn/_vllm_fa2_C.abi3.so",
|
|
"vllm/vllm_flash_attn/_vllm_fa3_C.abi3.so",
|
|
"vllm/vllm_flash_attn/flash_attn_interface.py",
|
|
"vllm/vllm_flash_attn/__init__.py",
|
|
"vllm/cumem_allocator.abi3.so",
|
|
# "vllm/_version.py", # not available in nightly wheels yet
|
|
]
|
|
file_members = filter(lambda x: x.filename in files_to_copy,
|
|
wheel.filelist)
|
|
|
|
for file in file_members:
|
|
print(f"Extracting and including {file.filename} "
|
|
"from existing wheel")
|
|
package_name = os.path.dirname(file.filename).replace("/", ".")
|
|
file_name = os.path.basename(file.filename)
|
|
|
|
if package_name not in package_data:
|
|
package_data[package_name] = []
|
|
|
|
wheel.extract(file)
|
|
if file_name.endswith(".py"):
|
|
# python files shouldn't be added to package_data
|
|
continue
|
|
|
|
package_data[package_name].append(file_name)
|
|
|
|
|
|
def _is_hpu() -> bool:
|
|
# if VLLM_TARGET_DEVICE env var was set explicitly, skip HPU autodetection
|
|
if os.getenv("VLLM_TARGET_DEVICE", None) == VLLM_TARGET_DEVICE:
|
|
return VLLM_TARGET_DEVICE == "hpu"
|
|
|
|
# if VLLM_TARGET_DEVICE was not set explicitly, check if hl-smi succeeds,
|
|
# and if it doesn't, check if habanalabs driver is loaded
|
|
is_hpu_available = False
|
|
try:
|
|
out = subprocess.run(["hl-smi"], capture_output=True, check=True)
|
|
is_hpu_available = out.returncode == 0
|
|
except (FileNotFoundError, PermissionError, subprocess.CalledProcessError):
|
|
if sys.platform.startswith("linux"):
|
|
try:
|
|
output = subprocess.check_output(
|
|
'lsmod | grep habanalabs | wc -l', shell=True)
|
|
is_hpu_available = int(output) > 0
|
|
except (ValueError, FileNotFoundError, PermissionError,
|
|
subprocess.CalledProcessError):
|
|
pass
|
|
return is_hpu_available
|
|
|
|
|
|
def _no_device() -> bool:
|
|
return VLLM_TARGET_DEVICE == "empty"
|
|
|
|
|
|
def _is_cuda() -> bool:
|
|
has_cuda = torch.version.cuda is not None
|
|
return (VLLM_TARGET_DEVICE == "cuda" and has_cuda
|
|
and not (_is_neuron() or _is_tpu() or _is_hpu()))
|
|
|
|
|
|
def _is_hip() -> bool:
|
|
return (VLLM_TARGET_DEVICE == "cuda"
|
|
or VLLM_TARGET_DEVICE == "rocm") and torch.version.hip is not None
|
|
|
|
|
|
def _is_neuron() -> bool:
|
|
torch_neuronx_installed = True
|
|
try:
|
|
subprocess.run(["neuron-ls"], capture_output=True, check=True)
|
|
except (FileNotFoundError, PermissionError, subprocess.CalledProcessError):
|
|
torch_neuronx_installed = False
|
|
return torch_neuronx_installed or VLLM_TARGET_DEVICE == "neuron"
|
|
|
|
|
|
def _is_tpu() -> bool:
|
|
return VLLM_TARGET_DEVICE == "tpu"
|
|
|
|
|
|
def _is_cpu() -> bool:
|
|
return VLLM_TARGET_DEVICE == "cpu"
|
|
|
|
|
|
def _is_openvino() -> bool:
|
|
return VLLM_TARGET_DEVICE == "openvino"
|
|
|
|
|
|
def _is_xpu() -> bool:
|
|
return VLLM_TARGET_DEVICE == "xpu"
|
|
|
|
|
|
def _build_custom_ops() -> bool:
|
|
return _is_cuda() or _is_hip() or _is_cpu()
|
|
|
|
|
|
def get_rocm_version():
|
|
# Get the Rocm version from the ROCM_HOME/bin/librocm-core.so
|
|
# see https://github.com/ROCm/rocm-core/blob/d11f5c20d500f729c393680a01fa902ebf92094b/rocm_version.cpp#L21
|
|
try:
|
|
librocm_core_file = Path(ROCM_HOME) / "lib" / "librocm-core.so"
|
|
if not librocm_core_file.is_file():
|
|
return None
|
|
librocm_core = ctypes.CDLL(librocm_core_file)
|
|
VerErrors = ctypes.c_uint32
|
|
get_rocm_core_version = librocm_core.getROCmVersion
|
|
get_rocm_core_version.restype = VerErrors
|
|
get_rocm_core_version.argtypes = [
|
|
ctypes.POINTER(ctypes.c_uint32),
|
|
ctypes.POINTER(ctypes.c_uint32),
|
|
ctypes.POINTER(ctypes.c_uint32),
|
|
]
|
|
major = ctypes.c_uint32()
|
|
minor = ctypes.c_uint32()
|
|
patch = ctypes.c_uint32()
|
|
|
|
if (get_rocm_core_version(ctypes.byref(major), ctypes.byref(minor),
|
|
ctypes.byref(patch)) == 0):
|
|
return f"{major.value}.{minor.value}.{patch.value}"
|
|
return None
|
|
except Exception:
|
|
return None
|
|
|
|
|
|
def get_neuronxcc_version():
|
|
import sysconfig
|
|
site_dir = sysconfig.get_paths()["purelib"]
|
|
version_file = os.path.join(site_dir, "neuronxcc", "version",
|
|
"__init__.py")
|
|
|
|
# Check if the command was executed successfully
|
|
with open(version_file) as fp:
|
|
content = fp.read()
|
|
|
|
# Extract the version using a regular expression
|
|
match = re.search(r"__version__ = '(\S+)'", content)
|
|
if match:
|
|
# Return the version string
|
|
return match.group(1)
|
|
else:
|
|
raise RuntimeError("Could not find Neuron version in the output")
|
|
|
|
|
|
def get_nvcc_cuda_version() -> Version:
|
|
"""Get the CUDA version from nvcc.
|
|
|
|
Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
|
|
"""
|
|
assert CUDA_HOME is not None, "CUDA_HOME is not set"
|
|
nvcc_output = subprocess.check_output([CUDA_HOME + "/bin/nvcc", "-V"],
|
|
universal_newlines=True)
|
|
output = nvcc_output.split()
|
|
release_idx = output.index("release") + 1
|
|
nvcc_cuda_version = parse(output[release_idx].split(",")[0])
|
|
return nvcc_cuda_version
|
|
|
|
|
|
def get_path(*filepath) -> str:
|
|
return os.path.join(ROOT_DIR, *filepath)
|
|
|
|
|
|
def get_gaudi_sw_version():
|
|
"""
|
|
Returns the driver version.
|
|
"""
|
|
# Enable console printing for `hl-smi` check
|
|
output = subprocess.run("hl-smi",
|
|
shell=True,
|
|
text=True,
|
|
capture_output=True,
|
|
env={"ENABLE_CONSOLE": "true"})
|
|
if output.returncode == 0 and output.stdout:
|
|
return output.stdout.split("\n")[2].replace(
|
|
" ", "").split(":")[1][:-1].split("-")[0]
|
|
return "0.0.0" # when hl-smi is not available
|
|
|
|
|
|
def get_vllm_version() -> str:
|
|
version = get_version(
|
|
write_to="vllm/_version.py", # TODO: move this to pyproject.toml
|
|
)
|
|
|
|
sep = "+" if "+" not in version else "." # dev versions might contain +
|
|
|
|
if _no_device():
|
|
if envs.VLLM_TARGET_DEVICE == "empty":
|
|
version += f"{sep}empty"
|
|
elif _is_cuda():
|
|
if envs.VLLM_USE_PRECOMPILED:
|
|
version += f"{sep}precompiled"
|
|
else:
|
|
cuda_version = str(get_nvcc_cuda_version())
|
|
if cuda_version != MAIN_CUDA_VERSION:
|
|
cuda_version_str = cuda_version.replace(".", "")[:3]
|
|
# skip this for source tarball, required for pypi
|
|
if "sdist" not in sys.argv:
|
|
version += f"{sep}cu{cuda_version_str}"
|
|
elif _is_hip():
|
|
# Get the Rocm Version
|
|
rocm_version = get_rocm_version() or torch.version.hip
|
|
if rocm_version and rocm_version != MAIN_CUDA_VERSION:
|
|
version += f"{sep}rocm{rocm_version.replace('.', '')[:3]}"
|
|
elif _is_neuron():
|
|
# Get the Neuron version
|
|
neuron_version = str(get_neuronxcc_version())
|
|
if neuron_version != MAIN_CUDA_VERSION:
|
|
neuron_version_str = neuron_version.replace(".", "")[:3]
|
|
version += f"{sep}neuron{neuron_version_str}"
|
|
elif _is_hpu():
|
|
# Get the Intel Gaudi Software Suite version
|
|
gaudi_sw_version = str(get_gaudi_sw_version())
|
|
if gaudi_sw_version != MAIN_CUDA_VERSION:
|
|
gaudi_sw_version = gaudi_sw_version.replace(".", "")[:3]
|
|
version += f"{sep}gaudi{gaudi_sw_version}"
|
|
elif _is_openvino():
|
|
version += f"{sep}openvino"
|
|
elif _is_tpu():
|
|
version += f"{sep}tpu"
|
|
elif _is_cpu():
|
|
version += f"{sep}cpu"
|
|
elif _is_xpu():
|
|
version += f"{sep}xpu"
|
|
else:
|
|
raise RuntimeError("Unknown runtime environment")
|
|
|
|
return version
|
|
|
|
|
|
def read_readme() -> str:
|
|
"""Read the README file if present."""
|
|
p = get_path("README.md")
|
|
if os.path.isfile(p):
|
|
with open(get_path("README.md"), encoding="utf-8") as f:
|
|
return f.read()
|
|
else:
|
|
return ""
|
|
|
|
|
|
def get_requirements() -> List[str]:
|
|
"""Get Python package dependencies from requirements.txt."""
|
|
|
|
def _read_requirements(filename: str) -> List[str]:
|
|
with open(get_path(filename)) as f:
|
|
requirements = f.read().strip().split("\n")
|
|
resolved_requirements = []
|
|
for line in requirements:
|
|
if line.startswith("-r "):
|
|
resolved_requirements += _read_requirements(line.split()[1])
|
|
elif line.startswith("--"):
|
|
continue
|
|
else:
|
|
resolved_requirements.append(line)
|
|
return resolved_requirements
|
|
|
|
if _no_device():
|
|
requirements = _read_requirements("requirements-cpu.txt")
|
|
elif _is_cuda():
|
|
requirements = _read_requirements("requirements-cuda.txt")
|
|
cuda_major, cuda_minor = torch.version.cuda.split(".")
|
|
modified_requirements = []
|
|
for req in requirements:
|
|
if ("vllm-flash-attn" in req
|
|
and not (cuda_major == "12" and cuda_minor == "1")):
|
|
# vllm-flash-attn is built only for CUDA 12.1.
|
|
# Skip for other versions.
|
|
continue
|
|
modified_requirements.append(req)
|
|
requirements = modified_requirements
|
|
elif _is_hip():
|
|
requirements = _read_requirements("requirements-rocm.txt")
|
|
elif _is_neuron():
|
|
requirements = _read_requirements("requirements-neuron.txt")
|
|
elif _is_hpu():
|
|
requirements = _read_requirements("requirements-hpu.txt")
|
|
elif _is_openvino():
|
|
requirements = _read_requirements("requirements-openvino.txt")
|
|
elif _is_tpu():
|
|
requirements = _read_requirements("requirements-tpu.txt")
|
|
elif _is_cpu():
|
|
requirements = _read_requirements("requirements-cpu.txt")
|
|
elif _is_xpu():
|
|
requirements = _read_requirements("requirements-xpu.txt")
|
|
else:
|
|
raise ValueError(
|
|
"Unsupported platform, please use CUDA, ROCm, Neuron, HPU, "
|
|
"OpenVINO, or CPU.")
|
|
return requirements
|
|
|
|
|
|
ext_modules = []
|
|
|
|
if _is_cuda() or _is_hip():
|
|
ext_modules.append(CMakeExtension(name="vllm._moe_C"))
|
|
|
|
if _is_hip():
|
|
ext_modules.append(CMakeExtension(name="vllm._rocm_C"))
|
|
|
|
if _is_cuda():
|
|
ext_modules.append(CMakeExtension(name="vllm.vllm_flash_attn._vllm_fa2_C"))
|
|
if envs.VLLM_USE_PRECOMPILED or get_nvcc_cuda_version() >= Version("12.0"):
|
|
# FA3 requires CUDA 12.0 or later
|
|
ext_modules.append(
|
|
CMakeExtension(name="vllm.vllm_flash_attn._vllm_fa3_C"))
|
|
ext_modules.append(CMakeExtension(name="vllm.cumem_allocator"))
|
|
|
|
if _build_custom_ops():
|
|
ext_modules.append(CMakeExtension(name="vllm._C"))
|
|
|
|
package_data = {
|
|
"vllm": [
|
|
"py.typed",
|
|
"model_executor/layers/fused_moe/configs/*.json",
|
|
"model_executor/layers/quantization/utils/configs/*.json",
|
|
]
|
|
}
|
|
|
|
if _no_device():
|
|
ext_modules = []
|
|
|
|
if not ext_modules:
|
|
cmdclass = {}
|
|
else:
|
|
cmdclass = {
|
|
"build_ext":
|
|
repackage_wheel if envs.VLLM_USE_PRECOMPILED else cmake_build_ext
|
|
}
|
|
|
|
setup(
|
|
name="vllm",
|
|
version=get_vllm_version(),
|
|
author="vLLM Team",
|
|
license="Apache 2.0",
|
|
description=("A high-throughput and memory-efficient inference and "
|
|
"serving engine for LLMs"),
|
|
long_description=read_readme(),
|
|
long_description_content_type="text/markdown",
|
|
url="https://github.com/vllm-project/vllm",
|
|
project_urls={
|
|
"Homepage": "https://github.com/vllm-project/vllm",
|
|
"Documentation": "https://vllm.readthedocs.io/en/latest/",
|
|
},
|
|
classifiers=[
|
|
"Programming Language :: Python :: 3.9",
|
|
"Programming Language :: Python :: 3.10",
|
|
"Programming Language :: Python :: 3.11",
|
|
"Programming Language :: Python :: 3.12",
|
|
"License :: OSI Approved :: Apache Software License",
|
|
"Intended Audience :: Developers",
|
|
"Intended Audience :: Information Technology",
|
|
"Intended Audience :: Science/Research",
|
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
|
"Topic :: Scientific/Engineering :: Information Analysis",
|
|
],
|
|
packages=find_packages(exclude=("benchmarks", "csrc", "docs", "examples",
|
|
"tests*")),
|
|
python_requires=">=3.9",
|
|
install_requires=get_requirements(),
|
|
ext_modules=ext_modules,
|
|
extras_require={
|
|
"tensorizer": ["tensorizer>=2.9.0"],
|
|
"runai": ["runai-model-streamer", "runai-model-streamer-s3", "boto3"],
|
|
"audio": ["librosa", "soundfile"], # Required for audio processing
|
|
"video": ["decord"] # Required for video processing
|
|
},
|
|
cmdclass=cmdclass,
|
|
package_data=package_data,
|
|
entry_points={
|
|
"console_scripts": [
|
|
"vllm=vllm.scripts:main",
|
|
],
|
|
},
|
|
)
|