vllm/tests/tensorizer_loader/test_tensorizer.py
2024-04-16 11:34:39 -07:00

328 lines
12 KiB
Python

import gc
import json
import os
import subprocess
from unittest.mock import MagicMock, patch
import openai
import pytest
import ray
import torch
from tests.entrypoints.test_openai_server import ServerRunner
from vllm import SamplingParams
from vllm.model_executor.model_loader.tensorizer import (
EncryptionParams, TensorizerConfig, TensorSerializer,
is_vllm_serialized_tensorizer, load_with_tensorizer, open_stream)
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, seed=0)
model_ref = "facebook/opt-125m"
tensorize_model_for_testing_script = os.path.join(
os.path.dirname(__file__), "tensorize_vllm_model_for_testing.py")
def is_curl_installed():
try:
subprocess.check_call(['curl', '--version'])
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
@pytest.fixture(autouse=True)
def tensorizer_config():
config = TensorizerConfig(tensorizer_uri="vllm", vllm_tensorized=True)
return config
@patch('vllm.model_executor.model_loader.tensorizer.TensorizerAgent')
def test_load_with_tensorizer(mock_agent, tensorizer_config):
mock_linear_method = MagicMock()
mock_agent_instance = mock_agent.return_value
mock_agent_instance.deserialize.return_value = MagicMock()
result = load_with_tensorizer(tensorizer_config,
linear_method=mock_linear_method)
mock_agent.assert_called_once_with(tensorizer_config,
linear_method=mock_linear_method)
mock_agent_instance.deserialize.assert_called_once()
assert result == mock_agent_instance.deserialize.return_value
def test_is_vllm_model_with_vllm_in_uri(tensorizer_config):
tensorizer_config.vllm_tensorized = True
result = is_vllm_serialized_tensorizer(tensorizer_config)
assert result is True
def test_is_vllm_model_without_vllm_in_uri(tensorizer_config):
tensorizer_config.vllm_tensorized = False
result = is_vllm_serialized_tensorizer(tensorizer_config)
assert result is False
def test_deserialized_vllm_model_has_same_outputs(vllm_runner, tmp_path):
vllm_model = vllm_runner(model_ref)
model_path = tmp_path / (model_ref + ".tensors")
outputs = vllm_model.generate(prompts, sampling_params)
model = (vllm_model.model.llm_engine.model_executor.driver_worker.
model_runner.model)
with open_stream(model_path, "wb+") as stream:
serializer = TensorSerializer(stream)
serializer.write_module(model)
del vllm_model, model
gc.collect()
torch.cuda.empty_cache()
loaded_vllm_model = vllm_runner(
model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(tensorizer_uri=model_path,
num_readers=1,
vllm_tensorized=True),
)
deserialized_outputs = loaded_vllm_model.generate(prompts, sampling_params)
# Assumes SamplingParams being seeded ensures the outputs are deterministic
assert outputs == deserialized_outputs
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
def test_can_deserialize_s3(vllm_runner):
model_ref = "EleutherAI/pythia-1.4b"
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
loaded_hf_model = vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=tensorized_path,
num_readers=1,
vllm_tensorized=False,
s3_endpoint="object.ord1.coreweave.com",
))
deserialized_outputs = loaded_hf_model.generate(prompts, sampling_params)
assert deserialized_outputs
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
def test_deserialized_encrypted_vllm_model_has_same_outputs(
vllm_runner, tmp_path):
vllm_model = vllm_runner(model_ref)
model_path = tmp_path / (model_ref + ".tensors")
key_path = tmp_path / (model_ref + ".key")
outputs = vllm_model.generate(prompts, sampling_params)
model = (vllm_model.model.llm_engine.model_executor.driver_worker.
model_runner.model)
encryption_params = EncryptionParams.random()
with open_stream(model_path, "wb+") as stream:
serializer = TensorSerializer(stream, encryption=encryption_params)
serializer.write_module(model)
with open_stream(key_path, "wb+") as stream:
stream.write(encryption_params.key)
del vllm_model, model
gc.collect()
torch.cuda.empty_cache()
loaded_vllm_model = vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=model_path,
encryption_keyfile=key_path,
num_readers=1,
vllm_tensorized=True))
deserialized_outputs = loaded_vllm_model.generate(prompts, sampling_params)
# Assumes SamplingParams being seeded ensures the outputs are deterministic
assert outputs == deserialized_outputs
def test_deserialized_hf_model_has_same_outputs(hf_runner, vllm_runner,
tmp_path):
hf_model = hf_runner(model_ref)
model_path = tmp_path / (model_ref + ".tensors")
max_tokens = 50
outputs = hf_model.generate_greedy(prompts, max_tokens=max_tokens)
with open_stream(model_path, "wb+") as stream:
serializer = TensorSerializer(stream)
serializer.write_module(hf_model.model)
del hf_model
gc.collect()
torch.cuda.empty_cache()
loaded_hf_model = vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=model_path,
num_readers=1,
vllm_tensorized=False))
deserialized_outputs = loaded_hf_model.generate_greedy(
prompts, max_tokens=max_tokens)
assert outputs == deserialized_outputs
def test_vllm_model_can_load_with_lora(vllm_runner, tmp_path):
from huggingface_hub import snapshot_download
from examples.multilora_inference import (create_test_prompts,
process_requests)
model_ref = "meta-llama/Llama-2-7b-hf"
lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
test_prompts = create_test_prompts(lora_path)
# Serialize model before deserializing and binding LoRA adapters
vllm_model = vllm_runner(model_ref, )
model_path = tmp_path / (model_ref + ".tensors")
model = (vllm_model.model.llm_engine.model_executor.driver_worker.
model_runner.model)
with open_stream(model_path, "wb+") as stream:
serializer = TensorSerializer(stream)
serializer.write_module(model)
del vllm_model, model
gc.collect()
torch.cuda.empty_cache()
loaded_vllm_model = vllm_runner(
model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=model_path,
num_readers=1,
vllm_tensorized=True,
),
enable_lora=True,
max_loras=1,
max_lora_rank=8,
max_cpu_loras=2,
max_num_seqs=50,
max_model_len=1000,
)
process_requests(loaded_vllm_model.model.llm_engine, test_prompts)
assert loaded_vllm_model
def test_load_without_tensorizer_load_format(vllm_runner):
with pytest.raises(ValueError):
vllm_runner(model_ref,
model_loader_extra_config=TensorizerConfig(
tensorizer_uri="test", vllm_tensorized=False))
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
def test_tensorize_vllm_model(tmp_path):
# Test serialize command
serialize_args = [
"python3", tensorize_model_for_testing_script, "--model", model_ref,
"--dtype", "float16", "serialize", "--serialized-directory", tmp_path,
"--suffix", "tests"
]
result = subprocess.run(serialize_args, capture_output=True, text=True)
print(result.stdout) # Print the output of the serialize command
assert result.returncode == 0, (f"Serialize command failed with output:"
f"\n{result.stdout}\n{result.stderr}")
path_to_tensors = f"{tmp_path}/vllm/{model_ref}/tests/model.tensors"
# Test deserialize command
deserialize_args = [
"python3", tensorize_model_for_testing_script, "--model", model_ref,
"--dtype", "float16", "deserialize", "--path-to-tensors",
path_to_tensors
]
result = subprocess.run(deserialize_args, capture_output=True, text=True)
assert result.returncode == 0, (f"Deserialize command failed with output:"
f"\n{result.stdout}\n{result.stderr}")
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
def test_openai_apiserver_with_tensorizer(tmp_path):
## Serialize model
serialize_args = [
"python3", tensorize_model_for_testing_script, "--model", model_ref,
"--dtype", "float16", "serialize", "--serialized-directory", tmp_path,
"--suffix", "tests"
]
result = subprocess.run(serialize_args, capture_output=True, text=True)
print(result.stdout) # Print the output of the serialize command
assert result.returncode == 0, (f"Serialize command failed with output:"
f"\n{result.stdout}\n{result.stderr}")
path_to_tensors = f"{tmp_path}/vllm/{model_ref}/tests/model.tensors"
model_loader_extra_config = {
"tensorizer_uri": path_to_tensors,
"vllm_tensorized": True
}
## Start OpenAI API server
openai_args = [
"--model", model_ref, "--dtype", "float16", "--load-format",
"tensorizer", "--model-loader-extra-config",
json.dumps(model_loader_extra_config), "--port", "8000"
]
server = ServerRunner.remote(openai_args)
assert ray.get(server.ready.remote())
print("Server ready.")
client = openai.OpenAI(
base_url="http://localhost:8000/v1",
api_key="token-abc123",
)
completion = client.completions.create(model=model_ref,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0)
assert completion.id is not None
assert completion.choices is not None and len(completion.choices) == 1
assert completion.choices[0].text is not None and len(
completion.choices[0].text) >= 5
assert completion.choices[0].finish_reason == "length"
assert completion.usage == openai.types.CompletionUsage(
completion_tokens=5, prompt_tokens=6, total_tokens=11)
def test_raise_value_error_on_invalid_load_format(vllm_runner):
with pytest.raises(ValueError):
vllm_runner(model_ref,
load_format="safetensors",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri="test", vllm_tensorized=False))
def test_tensorizer_with_tp(vllm_runner):
with pytest.raises(ValueError):
model_ref = "EleutherAI/pythia-1.4b"
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
vllm_runner(
model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=tensorized_path,
num_readers=1,
vllm_tensorized=False,
s3_endpoint="object.ord1.coreweave.com",
),
tensor_parallel_size=2,
)