vllm/csrc/quantization/aqlm/gemm_kernels.cu

599 lines
21 KiB
Plaintext

/*
* Modified by Neural Magic
* Adapted from https://github.com/Vahe1994/AQLM
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAStream.h>
#include <c10/cuda/CUDAGuard.h>
#include <iostream>
#include <cstdlib>
namespace vllm {
namespace aqlm {
__global__ void Code1x16MatVec(
const int4* __restrict__ A, const int4* __restrict__ B,
int4* __restrict__ C, const int4* __restrict__ codebook, const int prob_m,
const int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
// codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred) {
// advance to the correct codebook, this easy because we only multiply one
// column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size) {
codebook += codebook_stride;
++codebook_size;
}
}
int b_gl_rd = 0;
int c_gl_wr = a_gl_rd;
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
__shared__ int4 sh_b[32 * 9];
float res = 0;
int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32);
while (iters--) {
// We pad shared memory to avoid bank conflicts during reads
__syncthreads();
for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) {
if (b_gl_rd + i < prob_k / 8) sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i];
}
__syncthreads();
b_gl_rd += 32 * 8;
int b_sh_rd = 9 * (threadIdx.x % 32);
if (pred && a_gl_rd < a_gl_end) {
const uint16_t* enc = reinterpret_cast<const uint16_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
uint32_t dec[4];
// We bypass the L1 cache to avoid massive amounts of memory streaming
// that doesn't actually help us; this brings > 2x speedup.
asm volatile("ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];"
: "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3])
: "l"((void*)&codebook[enc[i]]));
half2* a = reinterpret_cast<half2*>(&dec);
half2* b = reinterpret_cast<half2*>(&sh_b[b_sh_rd]);
half2 res2 = {};
#pragma unroll
for (int j = 0; j < 4; j++) res2 = __hfma2(a[j], b[j], res2);
res += __half2float(res2.x) + __half2float(res2.y);
b_sh_rd++;
}
a_gl_rd += 32;
}
}
if (pred) {
#pragma unroll
for (int i = 16; i > 0; i /= 2) res += __shfl_down_sync(0xffffffff, res, i);
if (threadIdx.x % 32 == 0)
reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res);
}
}
__global__ void Code2x8MatVec(
const int4* __restrict__ A, const int4* __restrict__ B,
int4* __restrict__ C, const int4* __restrict__ codebook, int prob_m,
int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
// codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred) {
// advance to the correct codebook, this easy because we only multiply one
// column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size) {
codebook += codebook_stride;
++codebook_size;
}
}
int b_gl_rd = 0;
int c_gl_wr = a_gl_rd;
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int lane = threadIdx.x % 8;
extern __shared__ int4 sh[];
int4* sh_b = sh;
int4* sh_code = sh_b + 32 * 9;
int4* sh_code0 = sh_code;
int4* sh_code1 = sh_code + 256 * 8;
for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) {
int4 dec = codebook[i];
#pragma unroll
for (int j = 0; j < 8; j++) sh_code[8 * i + (j + lane) % 8] = dec;
}
__syncthreads();
float res = 0;
int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32);
while (iters--) {
// We pad shared memory to avoid bank conflicts during reads
__syncthreads();
for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) {
if (b_gl_rd + i < prob_k / 8) sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i];
}
__syncthreads();
b_gl_rd += 32 * 8;
int b_sh_rd = 9 * (threadIdx.x % 32);
if (pred && a_gl_rd < a_gl_end) {
const uint8_t* enc = reinterpret_cast<const uint8_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
half2* a0 =
reinterpret_cast<half2*>(&sh_code0[8 * enc[2 * i + 0] + lane]);
half2* a1 =
reinterpret_cast<half2*>(&sh_code1[8 * enc[2 * i + 1] + lane]);
half2* b = reinterpret_cast<half2*>(&sh_b[b_sh_rd]);
half2 res2 = {};
#pragma unroll
for (int j = 0; j < 4; j++)
res2 = __hfma2(__hadd2(a0[j], a1[j]), b[j], res2);
res += __half2float(res2.x) + __half2float(res2.y);
b_sh_rd++;
}
a_gl_rd += 32;
}
}
if (pred) {
#pragma unroll
for (int i = 16; i > 0; i /= 2) res += __shfl_down_sync(0xffffffff, res, i);
if (threadIdx.x % 32 == 0)
reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res);
}
}
__global__ void Code1x16Dequant(
const int4* __restrict__ A, int4* __restrict__ C,
const int4* __restrict__ codebook, int prob_m, int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
// codebook, at most 3 long, sums to m.
const int codebook_stride // as int4
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred) {
// advance to the correct codebook, this easy because we only multiply one
// column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size) {
codebook += codebook_stride;
++codebook_size;
}
}
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int c_gl_stride = prob_k / 8;
int c_gl_wr = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
c_gl_wr = c_gl_stride * c_gl_wr + (threadIdx.x % 32) * 8;
int iters = (prob_k / 8 - 1) / (8 * 32) + 1;
while (iters--) {
if (pred && a_gl_rd < a_gl_end) {
const uint16_t* enc = reinterpret_cast<const uint16_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
int4 chunk;
auto dec = reinterpret_cast<uint32_t*>(&chunk);
// We bypass the L1 cache to avoid massive amounts of memory streaming
// that doesn't actually help us; this brings > 2x speedup.
asm volatile("ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];"
: "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3])
: "l"((void*)&codebook[enc[i]]));
C[a_gl_rd * 8 + i] = chunk;
}
}
a_gl_rd += 32;
}
}
__global__ void Code2x8Dequant(
const int4* __restrict__ A, int4* __restrict__ C,
const int4* __restrict__ codebook, int prob_m, int prob_k,
const int4
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
// most 3 long, corresponds to cols.
const int codebook_stride // as int4
) {
int a_gl_stride = prob_k / 8 / 8;
int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
bool pred = a_gl_rd < prob_m;
if (pred) {
// advance to the correct codebook, this easy because we only multiply one
// column of the codebook.
auto codebook_size = &codebook_a_sizes.x;
while (a_gl_rd >= *codebook_size) {
codebook += codebook_stride;
++codebook_size;
}
}
a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32;
int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32;
int lane = threadIdx.x % 8;
int c_gl_stride = prob_k / 8;
int c_gl_wr = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32);
c_gl_wr = c_gl_stride * c_gl_wr + (threadIdx.x % 32) * 8;
extern __shared__ int4 sh[];
int4* sh_code = sh;
int4* sh_code0 = sh_code;
int4* sh_code1 = sh_code + 256 * 8;
for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) {
int4 dec = codebook[i];
#pragma unroll
for (int j = 0; j < 8; j++) sh_code[8 * i + (j + lane) % 8] = dec;
}
__syncthreads();
float res = 0;
int iters = (prob_k / 8 - 1) / (8 * 32) + 1;
while (iters--) {
if (pred && a_gl_rd < a_gl_end) {
const uint8_t* enc = reinterpret_cast<const uint8_t*>(&A[a_gl_rd]);
#pragma unroll
for (int i = 0; i < 8; i++) {
int4 chunk;
half2* a0 =
reinterpret_cast<half2*>(&sh_code0[8 * enc[2 * i + 0] + lane]);
half2* a1 =
reinterpret_cast<half2*>(&sh_code1[8 * enc[2 * i + 1] + lane]);
#pragma unroll
for (int j = 0; j < 4; j++)
reinterpret_cast<half2*>(&chunk)[j] = __hadd2(a0[j], a1[j]);
C[a_gl_rd * 8 + i] = chunk;
}
}
a_gl_rd += 32;
}
}
inline int ceildiv(int a, int b) { return (a + b - 1) / b; }
const int THREAD_M = 16;
void code1x16_matvec_cuda(const void* __restrict__ A,
const void* __restrict__ B, void* __restrict__ C,
const void* __restrict__ codebook, int prob_m,
int prob_k, const int4 codebook_a_sizes,
const int codebook_stride) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code1x16MatVec<<<blocks, threads, 16 * 32 * 9, stream>>>(
(const int4*)A, (const int4*)B, (int4*)C, (const int4*)codebook, prob_m,
prob_k, codebook_a_sizes, codebook_stride);
}
void code2x8_matvec_cuda(const void* __restrict__ A, const void* __restrict__ B,
void* __restrict__ C,
const void* __restrict__ codebook, int prob_m,
int prob_k, const int4 codebook_a_sizes,
const int codebook_stride) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
int shared = 16 * (2 * 256 * 8 + 32 * 9);
cudaFuncSetAttribute(Code2x8MatVec,
cudaFuncAttributeMaxDynamicSharedMemorySize, shared);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code2x8MatVec<<<blocks, threads, shared, stream>>>(
(const int4*)A, (const int4*)B, (int4*)C, (const int4*)codebook, prob_m,
prob_k, codebook_a_sizes, codebook_stride);
}
void code1x16_dequant_cuda(
const void* __restrict__ A, void* __restrict__ C,
const void* __restrict__ codebook, int prob_m, int prob_k,
const int4 codebook_a_sizes, // cumulative sizes of A spanning each
// codebook, at most 3 long.
const int codebook_stride // as int4.
) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
Code1x16Dequant<<<blocks, threads, 0, stream>>>(
(const int4*)A, (int4*)C, (const int4*)codebook, prob_m, prob_k,
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
// most 3 long.
codebook_stride // as int4.
);
}
// Dequantizes the code and codebook into weights.
void code2x8_dequant_cuda(
const void* __restrict__ A, void* __restrict__ C,
const void* __restrict__ codebook, int prob_m, int prob_k,
const int4
codebook_a_sizes, // cumulative sizes of A spanning each codebook, at
// most 3 long, corresponds to cols.
const int codebook_stride // as int4
) {
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0);
int waves = 0;
int thread_m;
do {
waves++;
thread_m = ceildiv(prob_m, waves * sms);
} while (thread_m > THREAD_M);
int blocks = ceildiv(prob_m, thread_m);
int threads = 32 * thread_m;
int shared = 16 * (2 * 256 * 8 + 32 * 9);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
cudaFuncSetAttribute(Code2x8Dequant,
cudaFuncAttributeMaxDynamicSharedMemorySize, shared);
Code2x8Dequant<<<blocks, threads, shared, stream>>>(
(const int4*)A, (int4*)C, (const int4*)codebook, prob_m, prob_k,
codebook_a_sizes, codebook_stride);
}
int codebook_stride(const torch::Tensor& codebooks) {
return codebooks.stride(0) * codebooks.element_size() / sizeof(int4);
}
void code1x16_matvec(
const torch::Tensor& A, const torch::Tensor& B, torch::Tensor& C,
const torch::Tensor& codebook,
const int4 codebook_a_sizes // cumulative sizes of A spanning each
// codebook, at most 3 long.
) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
int prob_m = C.size(0);
int prob_k = B.size(0);
code1x16_matvec_cuda(A.data_ptr(), B.data_ptr(), C.data_ptr(),
codebook.data_ptr(), prob_m, prob_k, codebook_a_sizes,
codebook_stride(codebook));
}
torch::Tensor code1x16_matmat(const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const int4 codebook_a_sizes,
const std::optional<torch::Tensor>& bias) {
auto input_sizes = input.sizes();
auto out_features = codes.size(0) * codebooks.size(2);
auto flat_input = input.reshape({-1, input.size(-1)});
auto flat_output = torch::empty(
{flat_input.size(0), out_features},
torch::TensorOptions().dtype(input.dtype()).device(input.device()));
for (int i = 0; i < flat_input.size(0); ++i) {
auto input_vec = flat_input.index({i});
auto output_vec = flat_output.index({i});
code1x16_matvec(codes.squeeze(2), input_vec, output_vec, codebooks,
codebook_a_sizes);
}
flat_output *= scales.flatten().unsqueeze(0);
if (bias.has_value()) {
flat_output += bias->unsqueeze(0);
}
auto output_sizes = input_sizes.vec();
output_sizes.pop_back();
output_sizes.push_back(-1);
auto output = flat_output.reshape(output_sizes);
return output;
}
void code2x8_matvec(const torch::Tensor& A, const torch::Tensor& B,
torch::Tensor& C, const torch::Tensor& codebook,
const int4 codebook_a_sizes) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
int prob_m = C.size(0);
int prob_k = B.size(0);
code2x8_matvec_cuda(A.data_ptr(), B.data_ptr(), C.data_ptr(),
codebook.data_ptr(), prob_m, prob_k, codebook_a_sizes,
2 * codebook_stride(codebook));
}
torch::Tensor code2x8_matmat(const torch::Tensor& input,
const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const int4 codebook_a_sizes,
const std::optional<torch::Tensor>& bias) {
auto input_sizes = input.sizes();
auto out_features = codes.size(0) * codebooks.size(2);
auto flat_input = input.reshape({-1, input.size(-1)});
auto flat_output = torch::empty(
{flat_input.size(0), out_features},
torch::TensorOptions().dtype(input.dtype()).device(input.device()));
for (int i = 0; i < flat_input.size(0); ++i) {
auto input_vec = flat_input.index({i});
auto output_vec = flat_output.index({i});
code2x8_matvec(codes.squeeze(2), input_vec, output_vec, codebooks,
codebook_a_sizes);
}
flat_output *= scales.flatten().unsqueeze(0);
if (bias.has_value()) {
flat_output += bias->unsqueeze(0);
}
auto output_sizes = input_sizes.vec();
output_sizes.pop_back();
output_sizes.push_back(-1);
auto output = flat_output.reshape(output_sizes);
return output;
}
// Accumulate the partition sizes.
int4 accumulate_sizes(const torch::Tensor& codebook_partition_sizes) {
int4 cumulative_sizes;
auto cumulative_size = &cumulative_sizes.x;
int i = 0;
int last = 0;
assert(codebook_partition_sizes.size(0) <= 4);
for (; i < codebook_partition_sizes.size(0); ++i, ++cumulative_size) {
*cumulative_size = codebook_partition_sizes[i].item<int>() + last;
last = *cumulative_size;
}
// fill in the rest with unreachable.
for (; i < 4; ++i, ++cumulative_size) {
*cumulative_size = last * 10;
}
return cumulative_sizes;
}
} // namespace aqlm
} // namespace vllm
torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& scales,
const torch::Tensor& codebook_partition_sizes,
const std::optional<torch::Tensor>& bias) {
int4 cumulative_sizes =
vllm::aqlm::accumulate_sizes(codebook_partition_sizes);
int const nbooks = codebooks.size(0) / codebook_partition_sizes.size(0);
int const entries = codebooks.size(1);
if (nbooks == 1 && entries == (1 << 16)) {
return vllm::aqlm::code1x16_matmat(input, codes, codebooks, scales,
cumulative_sizes, bias);
}
if (nbooks == 2 && entries == (1 << 8)) {
return vllm::aqlm::code2x8_matmat(input, codes, codebooks, scales,
cumulative_sizes, bias);
}
TORCH_CHECK(false, "AQLM with ", nbooks, " codebooks and ", entries,
" entries is not currently supported.")
return {};
}
torch::Tensor aqlm_dequant(const torch::Tensor& codes,
const torch::Tensor& codebooks,
const torch::Tensor& codebook_partition_sizes) {
int4 cumulative_sizes =
vllm::aqlm::accumulate_sizes(codebook_partition_sizes);
int const nbooks = codebooks.size(0) / codebook_partition_sizes.size(0);
int const entries = codebooks.size(1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(codes));
int rows = codes.size(1);
int cols = codes.size(0);
auto in_features = codes.size(1) * 8;
auto out_features = codes.size(0);
assert(out_features = codebook_partition_sizes.sum().item<int>());
auto weights = torch::empty({out_features, in_features},
torch::TensorOptions()
.dtype(codebooks.dtype())
.device(codebooks.device()));
if (nbooks == 1 && entries == (1 << 16)) {
vllm::aqlm::code1x16_dequant_cuda(codes.data_ptr(), weights.data_ptr(),
codebooks.data_ptr(), out_features,
in_features, cumulative_sizes,
vllm::aqlm::codebook_stride(codebooks));
// if you wanted to flip to scaling the weights, (though it's 30%-ish slower
// and not consistent with gemv implementation.) weights *=
// scales.index({"...", 0, 0});
return weights;
}
if (nbooks == 2 && entries == (1 << 8)) {
vllm::aqlm::code2x8_dequant_cuda(codes.data_ptr(), weights.data_ptr(),
codebooks.data_ptr(), out_features,
in_features, cumulative_sizes,
vllm::aqlm::codebook_stride(codebooks));
// if you wanted to flip to scaling the weights, (though it's 30%-ish slower
// and not consistent with gemv implementation) weights *=
// scales.index({"...", 0, 0});
return weights;
}
TORCH_CHECK(false, "AQLM with ", nbooks, " codebooks and ", entries,
" entries is not currently supported.")
return {};
}